Publications (2705)

Sort by · date · names

Titer and Distribution of ‘<i>Candidatus</i> Phytoplasma pruni’ in <i>Prunus avium</i>

Citation
Wright et al. (2022). Phytopathology® 112 (7)
Names
Ca. Phytoplasma pruni
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Phytoplasma pruni’ infection in cherries causes small, misshapen fruit with poor color and taste, rendering the fruit unmarketable. However, this is a disease with a long development cycle and a scattered, nonuniform symptom distribution in the early stages. To better understand the biology as well as the relationship between pathogen titer and disease expression, we carried out seasonal, spatial, and temporal examinations of ‘Ca. P. pruni’ titer and distribution in infected orchard-grown trees. Sequential sampling of heavily infected trees revealed marked seasonal patterns, with differential accumulation in woody stem and leaf tissues and, most notably, within fruit in the early stages of development from bloom to pit hardening. Furthermore, mapping phytoplasma distribution and titer in trees at different stages of infection indicated that infection proceeds through a series of stages. Initially, infection spreads basipetally and accumulates in the roots before populating aerial parts of the trees from the trunk upward, with infection of specific tissues and limbs followed by an increasing phytoplasma titer. Finally, we observed a correlation between phytoplasma titer and symptom severity, with severe symptom onset associated with three to four orders of magnitude more phytoplasma than mild symptoms. Cumulatively, these data aid in accurate sampling and management decision-making and furthers our understanding of disease development.

Identification of housekeeping genes of Candidatus Branchiomonas cysticola associated with epitheliocystis in Atlantic salmon (Salmo salar L.)

Citation
Mjølnerød et al. (2022). Archives of Microbiology 204 (7)
Names
Ca. Branchiomonas cysticola
Subjects
Biochemistry General Medicine Genetics Microbiology Molecular Biology
Abstract
AbstractCandidatus Branchiomonas cysticola is an intracellular, gram-negative Betaproteobacteria causing epitheliocystis in Atlantic Salmon (Salmo salar L.). The bacterium has not been genetically characterized at the intraspecific level despite its high prevalence among salmon suffering from gill disease in Norwegian aquaculture. DNA from gill samples of Atlantic salmon PCR positive for Cand. B. cysticola and displaying pathological signs of gill disease, was, therefore, extracted and subject to next-generation sequencing (mNGS). Partial sequences of four housekeeping (HK) genes (aceE, lepA, rplB, rpoC) were ultimately identified from the sequenced material. Assays for real-time RT-PCR and fluorescence in-situ hybridization, targeting the newly acquired genes, were simultaneously applied with existing assays targeting the previously characterized 16S rRNA gene. Agreement in both expression and specificity between these putative HK genes and the 16S gene was observed in all instances, indicating that the partial sequences of these HK genes originate from Cand. B. cysticola. The knowledge generated from the present study constitutes a major prerequisite for the future design of novel genotyping schemes for this bacterium.

Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, “ <i>Candidatus</i> Dehalogenimonas etheniformans”

Citation
Chen et al. (2022). Applied and Environmental Microbiology 88 (12)
Names
Ca. Dehalogenimonas etheniformans
Subjects
Applied Microbiology and Biotechnology Biotechnology Ecology Food Science
Abstract
Chlorinated ethenes are risk drivers at many contaminated sites, and current bioremediation efforts focus on organohalide-respiring Dehalococcoides mccartyi strains to achieve detoxification. We isolated and characterized the first non- Dehalococcoides bacterium, “ Candidatus Dehalogenimonas etheniformans” strain GP, capable of metabolic reductive dechlorination of TCE, all DCE isomers, and VC to environmentally benign ethene.

Reevaluation of the Phylogenetic Diversity and Global Distribution of the Genus “ <i>Candidatus</i> Accumulibacter”

Citation
Petriglieri et al. (2022). mSystems 7 (3)
Names
Ca. Accumulibacter
Subjects
Biochemistry Computer Science Applications Ecology, Evolution, Behavior and Systematics Genetics Microbiology Modeling and Simulation Molecular Biology Physiology
Abstract
“ Candidatus Accumulibacter” is the most studied PAO, with a primary role in biological nutrient removal. However, the species-level taxonomy of this lineage is convoluted due to the use of different phylogenetic markers or genome sequencing approaches. Here, we redefined the phylogeny of these organisms, proposing a comprehensive approach which could be used to address the classification of other diverse and uncultivated lineages.

Two New Species of Filamentous Sulfur Bacteria of the Genus Thiothrix, Thiothrix winogradskyi sp. nov. and ‘Candidatus Thiothrix sulfatifontis’ sp. nov.

Citation
Ravin et al. (2022). Microorganisms 10 (7)
Names
Ca. Thiothrix sulfatifontis
Subjects
Microbiology Microbiology (medical) Virology
Abstract
The metagenome of foulings from sulfidic spring “Serovodorodny” (Tatarstan, Russia), where members of the genus Thiothrix was observed, was sequenced. Representatives of the phyla Gammaproteobacteria, Cyanobacteria and Campilobacteriota dominated in the microbial community. The complete genome of Thiothrix sp. KT was assembled from the metagenome. It displayed 93.93–99.72% 16S rRNA gene sequence identity to other Thiothrix species. The average nucleotide identity (ANI) и digital DNA-DNA hybridization (dDDH) showed that the genome designated KT represents a new species within the genus Thiothrix, ‘Candidatus Thiothrix sulfatifontis’ sp. nov. KT. The taxonomic status has been determined of the strain Thiothrix sp. CT3, isolated about 30 years ago and not assigned to any of Thiothrix species due to high 16S rRNA gene sequence identity with related species (i.e., 98.8–99.4%). The complete genome sequence of strain CT3 was determined. The ANI between CT3 and other Thiothrix species was below 82%, and the dDDH values were less than 40%, indicating that strain CT3 belongs to a novel species, Thiothrix winogradskyi sp. nov. A genome analysis showed that both strains are chemo-organoheterotrophs, chemolithotrophs (in the presence of hydrogen sulfide and thiosulfate) and chemoautotrophs. For the first time, representatives of Thiothrix showed anaerobic growth in the presence of thiosulfate.