Publications (2703)

Sort by · date · names

Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in “Candidatus Liberibacter asiaticus”

Citation
Wang et al. (2022). International Journal of Molecular Sciences 23 (17)
Names
Ca. Liberibacter asiaticus
Subjects
Catalysis Computer Science Applications General Medicine Inorganic Chemistry Molecular Biology Organic Chemistry Physical and Theoretical Chemistry Spectroscopy
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is the causal agent of citrus Huanglongbing (HLB, also called citrus greening disease), a highly destructive disease threatening citrus production worldwide. A novel Microviridae phage (named CLasMV1) has been found to infect CLas, providing a potential therapeutic strategy for CLas/HLB control. However, little is known about the CLasMV1 biology. In this study, we analyzed the population dynamics of CLasMV1 between the insect vector of CLas, the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) and the holoparasitic dodder plant (Cuscuta campestris Yunck.); both acquired CLasMV1-infected CLas from an HLB citrus. All CLas-positive dodder samples were CLasMV1-positive, whereas only 32% of CLas-positive ACP samples were identified as CLasMV1-positive. Quantitative analyses showed a similar distribution pattern of CLasMV1 phage and CLas among eight citrus cultivars by presenting at highest abundance in the fruit pith and/or the center axis of the fruit. Transcriptome analyses revealed the possible lytic activity of CLasMV1 on CLas in fruit pith as evidenced by high-level expressions of CLasMV1 genes, and CLas genes related to cell wall biogenesis and remodeling to maintain the CLas cell envelope integrity. The up-regulation of CLas genes were involved in restriction–modification system that could involve possible phage resistance for CLas during CLasMV1 infection. In addition, the regulation of CLas genes involved in cell surface components and Sec pathway by CLasMV1 phage could be beneficial for phage infection. This study expanded our knowledge of CLasMV1 phage that will benefit further CLas phage research and HLB control.

Physiological and transcriptomic analysis of Candidatus Phytoplasma pruni infection in Prunus persica

Citation
Wright et al. (2022). PhytoFrontiers™
Names
Ca. Phytoplasma pruni
Subjects
General Medicine
Abstract
Candidatus Phytoplasma pruni is the causative agent of X-disease on peach (Prunus persica) trees. Infected trees exhibit premature yellowing, leaf necrosis causing a shot-hole appearance, limb dieback, and eventual death. How pathogen infection leads to these symptoms is unknown. This study undertook a modern characterization of the disease by assessing the physiological and transcriptomic consequences of phytoplasma infection. Phytoplasma titer was high in the symptomatic tissues and undetected or at low titer in asymptomatic tissues. Symptomatic leaves had a significant decrease in chlorophyll a, chlorophyll b, and carotenoids. Transcriptomic analysis showed alterations in genes related to phytohormone synthesis and signaling, circadian rhythms, lignification, and sugar synthesis and transport. Several transcripts that may be related to symptom development were identified. Collectively these data give a much clearer picture of symptom development in Ca. P. pruni infected P. persica and provide several avenues of further research in determining how Ca. P. pruni interacts with its host to elicit the observed symptoms.

Symbiosis between <i>Candidatus</i> Patescibacteria and Archaea Discovered in Wastewater-Treating Bioreactors

Citation
Kuroda et al. (2022). mBio
Names
Ca. Patescibacteria
Subjects
Microbiology Virology
Abstract
One highly diverse phylogenetic group of Bacteria, Ca . Patescibacteria, remains poorly understood, but, from the few cultured representatives and metagenomic investigations, they are thought to live symbiotically or parasitically with other bacteria or even with eukarya.

Mutual Exclusion of <i>Methanobrevibacter</i> Species in the Human Gut Microbiota Facilitates Directed Cultivation of a <i>Candidatus</i> Methanobrevibacter Intestini Representative

Citation
Low et al. (2022). Microbiology Spectrum 10 (4)
Names
Methanobrevibacter
Subjects
Cell Biology Ecology General Immunology and Microbiology Genetics Infectious Diseases Microbiology (medical) Physiology
Abstract
Methanogens are important hydrogen consumers in the gut and are associated with differing host health. Here, we determine the prevalence and abundance of archaeal species in the guts of a multi-ethnic cohort of healthy Singapore residents.

Nanobdella aerobiophila gen. nov., sp. nov., a thermoacidophilic, obligate ectosymbiotic archaeon, and proposal of Nanobdellaceae fam. nov., Nanobdellales ord. nov. and Nanobdellia class. nov.

Citation
Kato et al. (2022). International Journal of Systematic and Evolutionary Microbiology 72 (8)
Names
Nanobdellia Nanobdellales Nanobdellaceae Nanobdella Nanobdella aerobiophila T
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
A co-culture of a novel thermoacidophilic, obligate symbiotic archaeon, designated as strain MJ1T, with its specific host archaeon Metallosphaera sedula strain MJ1HA was obtained from a terrestrial hot spring in Japan. Strain MJ1T grew in the co-culture under aerobic conditions. Coccoid cells of strain MJ1T were 200–500 nm in diameter, and attached to the MJ1HA cells in the co-culture. The ranges and optima of the growth temperature and pH of strain MJ1T in the co-culture were 60–75 °C (optimum, 65–70 °C) and pH 1.0–4.0 (optimum, pH 2.5), respectively. Core lipids of dialkyl glycerol tetraethers (GDGT)−3 and GDGT-4 were highly abundant in MJ1T cells concentrated from the co-culture. Strain MJ1T has a small genome (0.67 Mbp) lacking genes for biosynthesis of essential biomolecules, such as nucleotides, lipids and ATP. The genomic DNA G+C content was 24.9 mol%. The 16S rRNA gene sequence of strain MJ1T was most closely related to that of the cultivated species, ‘Nanopusillus acidilobi’ strain N7A (85.8 % similarity). Based on phylogenetic and physiological characteristics, we propose the name Nanobdella aerobiophila gen. nov., sp. nov. to accommodate the strain MJ1T (=JCM 33616T=DSM 111728T). In addition, we propose the names Nanobdellaceae fam. nov., Nanobdellales ord. nov., and Nanobdellia class. nov. to accommodate the novel genus.