Publications (3212)

Sort by · date · names

A Field Deployable Real-Time Loop-Mediated Isothermal Amplification Targeting Five Copy nrdB Gene for the Detection of ‘Candidatus Liberibacter asiaticus’ in Citrus

Citation
Danda et al. (2023). The Plant Pathology Journal 39 (4)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science
Abstract
Huanglongbing (HLB) is one of the most destructive diseases in citrus, which imperils the sustainability of citriculture worldwide. The presumed causal agent of HLB, ‘<i>Candidatus</i> Liberibacter asiaticus’ (CLas) is a non-culturable phloem-limited α-proteobacterium transmitted by Asian citrus psyllids (ACP, <i>Diaphorina citri</i> Kuwayama). A widely adopted method for HLB diagnosis is based on quantitative real-time polymerase chain reaction (qPCR). Although HLB diagnostic qPCR provides high sensitivity and good reproducibility, it is limited by time-consuming DNA preparation from plant tissue or ACP and the requirement of proper lab instruments including a thermal cycler to conduct qPCR. In an attempt to develop a quick assay that can be deployed in the field for CLas detection, we developed a real-time loop-mediated isothermal amplification (rt-LAMP) assay by targeting the CLas five copy <i>nrd</i>B gene. The rt-LAMP assay using various plant sample types and psyllids successfully detected the <i>nrd</i>B target as low as ~2.6 Log<sub>10</sub> copies. Although the rt-LAMP assay was less sensitive than laboratory-based qPCR (detection limit ~10 copies), the data obtained with citrus leaf and bark and ACP showed that the rt-LAMP assay has >96% CLas detection rate, compared to that of laboratory-based qPCR. However, the CLas detection rate in fibrous roots was significantly decreased compared to qPCR due to low CLas titer in some root DNA sample. We also demonstrated that the rt-LAMP assay can be used with a crude leaf DNA extract which is fully deployable in the field for quick and reliable HLB screening.

Hemp abnormal growth is attributed to mono-, di-, or tri-infections of Spiroplasma citri, Candidatus Phytoplasma trifolii, and Beet curly top virus

Citation
Schoener, Wang (2023). PhytoFrontiers™
Names (1)
Ca. Phytoplasma trifolii
Subjects
General Medicine
Abstract
As hemp (Cannabis sativa) emerges as a commercial crop in Nevada, mild to severe abnormal growth has been observed from many plants in commercial fields throughout the growing season. Affected plants exhibited a group of symptoms typically including stunting, leaf yellowing, excessive apical branching, clusters of Witches’ broom, leaf rolling upwards, and leaf mottling and mosaic. These symptoms mostly showed up together in a plant or a crop and are defined here as abnormal growth syndrome (AGS). Between 2017-2019, the Nevada State Plant Pathology and Molecular Diagnostic Lab received 67 symptomatic hemp samples from Nevada for diagnosis, and Candidatus Phytoplasma trifolii was detected in 14 samples (21%). To further investigate additional biotic agents associated with the AGS, PCR products generated by primers P1/P7 were cloned into pGEM®-T vector and sequenced, and Spiroplasma citri DNAs were found in 2 samples (3%). All 67 DNA samples were further tested for Beet curly top virus (BCTV), and 57 samples (85%) were found to be infected by BCTV. Twelve samples (18%) were co-infected by both C. Phytoplasma trifolii and BCTV, and two (3%) were co-infected by S. citri, C. Phytoplasma trifolii, and BCTV. The findings suggest that BCTV is the most prevalent pathogen causing the hemp abnormal growth in Nevada, but C. Phytoplasma trifolii and S. citri may also contribute to the severity and complexity of symptoms. Thus, hemp abnormal growth can be attributed to single, dual, or triple infections of these three leafhopper-vectored mollicutes and virus.

Preliminary landscape of Candidatus Saccharibacteria in the human microbiome

Citation
Naud et al. (2023). Frontiers in Cellular and Infection Microbiology 13
Names (1)
Ca. Saccharibacteria
Subjects
Immunology Infectious Diseases Microbiology Microbiology (medical)
Abstract
IntroductionCandidate Phyla Radiation (CPR) and more specifically Candidatus Saccharibacteria (TM7) have now been established as ubiquitous members of the human oral microbiota. Additionally, CPR have been reported in the gastrointestinal and urogenital tracts. However, the exploration of new human niches has been limited to date.MethodsIn this study, we performed a prospective and retrospective screening of TM7 in human samples using standard PCR, real-time PCR, scanning electron microscopy (SEM) and shotgun metagenomics.ResultsUsing Real-time PCR and standard PCR, oral samples presented the highest TM7 prevalence followed by fecal samples, breast milk samples, vaginal samples and urine samples. Surprisingly, TM7 were also detected in infectious samples, namely cardiac valves and blood cultures at a low prevalence (under 3%). Moreover, we observed CPR-like structures using SEM in all sample types except cardiac valves. The reconstruction of TM7 genomes in oral and fecal samples from shotgun metagenomics reads further confirmed their high prevalence in some samples.ConclusionThis study confirmed, through their detection in multiple human samples, that TM7 are human commensals that can also be found in clinical settings. Their detection in clinical samples warrants further studies to explore their role in a pathological setting.

Recovery Plan for X-Disease in Stone Fruit Caused by ‘Candidatus Phytoplasma pruni’

Citation
Harper et al. (2023). Plant Health Progress
Names (1)
Ca. Phytoplasma pruni
Subjects
Horticulture Plant Science
Abstract
Stone fruits are a multibillion-dollar industry for the United States and Canada, one that has repeatedly suffered significant economic losses due to outbreaks of the X-disease phytoplasma (‘ Candidatus Phytoplasma pruni’) over the last century. Orchards and entire production areas have been abandoned, with corresponding losses to growers, fruit packers, and consumers. The most recent outbreak, in the U.S. Pacific Northwest, resulted in an estimated $65 million (USD) loss in revenue between 2015 and 2020 and is only increasing in incidence. Already present across much of the continental United States and Canada, the phytoplasma has a broad host range beyond stone fruit and is transmitted by at least eight leafhopper species, therefore stone fruit production in every state is at significant risk. This recovery plan was produced as part of the National Plant Disease Recovery System and is intended to provide a review of pathogen biology, assess the status of critical recovery components, and identify disease management research, extension, and education needs.

Candidatus Liberibacter asiaticus’ Expands and Scavenges the Nutritional Choline Pool in its Host Grapefruit (Citrus × paradisi) Leaves

Citation
Jain et al. (2023). PhytoFrontiers™
Names (1)
Ca. Liberibacter asiaticus
Subjects
General Medicine
Abstract
Phosphatidylcholine (PtdCho) is an unusual membrane phospholipid present in some endosymbiotic and intracellular pathogenic prokaryotes. ‘Candidatus Liberibacter asiaticus’ (CLas) is a phloem-limited, uncultured, fastidious α-Proteobacterium associated with the devastating citrus “greening” disease (Huanglongbing). Phylogenetically related but nonpathogenic L. crescens (Lcr) was used as a culturable surrogate to examine PtdCho biosynthesis in pathogenic CLas. Genes encoding key enzymes for two alternative PtdCho biosynthetic routes are present in the Lcr genome, viz. the one-step CDP-choline (pcs-encoding phosphatidylcholine synthase) and the three-step methyl-transferase pathway (pmt-encoding phospholipid N-methyltransferase). However, only the CDP-choline pathway genes for incorporating exogenous Cho were identified in the CLas genome. Exogenous Cho enhanced growth and alleviated osmotic stress in wild-type Lcr and in the pmt insertion mutant strains when cultured in sugar-rich medium. Quantitative RT-PCR analyses confirmed active uptake and condensation of nutritional Cho into PtdCho by CLas in both its plant host and psyllid vector. CLas-infected grapefruit leaves showed transcriptional activation of Cho biosynthesis genes and 2.8-fold higher levels of Cho. In plant cells, the compatible osmolyte glycine-betaine (GlyBet) is also derived from Cho. Expression of GlyBet biosynthesis genes and the GlyBet content was similar in both CLas-infected and healthy leaf tissue. The data presented here suggest that CLas likely exploits the Cho biosynthetic pathway in citrus hosts to expand the nutritional Cho pool.

Function and molecular mechanism analysis of CaLasSDE460 effector involved in the pathogenesis of “Candidatus Liberibacter asiaticus” in citrus

Citation
Wang et al. (2023). Molecular Horticulture 3 (1)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Earth-Surface Processes
Abstract
AbstractCitrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the temperature increased from 25 °C to 32 °C, CaLas growth and symptom development in transgenic plants were slower than those in WT controls. RNA-seq analysis of transgenic plants showed that CaLasSDE460 affected multiple biological processes. At 25 °C, transcription activities of the “Protein processing in endoplasmic reticulum” and “Cyanoamino acid metabolism” pathways increased while transcription activities of many pathways decreased at 32 °C. 124 and 53 genes, separately annotated to plant-pathogen interaction and MAPK signaling pathways, showed decreased expression at 32 °C, compared with these (38 for plant-pathogen interaction and 17 for MAPK signaling) at 25 °C. Several important genes (MAPKKK14, HSP70b, NCED3 and WRKY33), remarkably affected by CaLasSDE460, were identified. Totally, our data suggested that CaLasSDE460 participated in the pathogenesis of CaLas through interfering transcription activities of citrus defense response and this interfering was temperature-dependent. Graphical Abstract

A Sec-dependent effector, CLIBASIA_04425, contributes to virulence in ‘Candidatus Liberibater asiaticus’

Citation
Zhang et al. (2023). Frontiers in Plant Science 14
Names (2)
Ca. Liberibater asiaticus Ca. Liberibacter asiaticus
Subjects
Plant Science
Abstract
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide, mainly caused by ‘Candidatus Liberibacter asiaticus’ (CLas). It encodes a large number of Sec-dependent effectors that contribute to HLB progression. In this study, an elicitor triggering ROS burst and cell death in Nicotiana benthamiana, CLIBASIA_04425 (CLas4425), was identified. Of particular interest, its cell death-inducing activity is associated with its subcellular localization and the cytoplasmic receptor Botrytis-induced kinase 1 (BIK1). Compared with CLas infected psyllids, CLas4425 showed higher expression level in planta. The transient expression of CLas4425 in N. benthamiana and its overexpression in Citrus sinensis enhanced plant susceptibility to Pseudomonas syringae pv. tomato DC3000 ΔhopQ1-1 and CLas, respectively. Furthermore, the salicylic acid (SA) level along with the expression of genes NPR1/EDS1/NDR1/PRs in SA signal transduction was repressed in CLas4425 transgenic citrus plants. Taken together, CLas4425 is a virulence factor that promotes CLas proliferation, likely by interfering with SA-mediated plant immunity. The results obtained facilitate our understanding of CLas pathogenesis.

Effects of Candidatus Liberibacter asiaticus infection on metagenome of Diaphorina citri gut endosymbiont

Citation
Pan et al. (2023). Scientific Data 10 (1)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Computer Science Applications Education Information Systems Library and Information Sciences Statistics and Probability Statistics, Probability and Uncertainty
Abstract
AbstractAsian citrus psyllid (Diaphorina citri, D. citri) is the important vector of “Candidatus Liberibacter asiaticus” (CLas), associated with Huanglongbing, the most devastating citrus disease worldwide. CLas can affect endosymbiont abundance of D. citri. Here, we generated the high-quality gut endosymbiont metagenomes of Diaphorina citri on the condition of CLas infected and uninfected. The dataset comprised 6616.74 M and 6586.04 M raw reads, on overage, from CLas uninfected and infected psyllid strains, respectively. Taxonomic analysis revealed that a total of 1046 species were annotated with 10 Archaea, 733 Bacteria, 234 Eukaryota, and 69 Viruses. 80 unique genera in CLas infected D. citri were identified. DIAMOND software was used for complement function research against various functional databases, including Nr, KEGG, eggNOG, and CAZy, which annotated 84543 protein-coding genes. These datasets provided an avenue for further study of the interaction mechanism between CLas and D. citri.