Publications
3444

Sort by date names
Browse by authors subjects journals

Lists of names of prokaryotic Candidatus taxa

Citation
Oren et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (7)
Names
Electrothrix Electronema Electronema aureum Ts Sulfuritelmatomonas gaucii Ts “Accumulibacter phosphatis” “Vecturitrichales” “Nitrosocaldales” “Moduliflexales” “Gastranaerophilales” “Altarchaeales” “Actinomarinales” “Vecturitrichia” “Thermofontia” “Moduliflexia” “Mariprofundia” “Galacturonatibacter soehngenii” “Fukatsuia symbiotica” “Fritschea eriococci” “Fritschea bemisiae” “Fokinia solitaria” “Fokinia crypta” “Fodinibacter communicans” “Flaviluna lacus” “Finniella” “Finniella lucida” “Finniella inopinata” “Fervidibacter sacchari” “Epulonipiscium fischelsonii” “Epulonipiscioides saccharophilum” “Epulonipiscioides gigas” “Epixenosoma ejectans” “Entotheonella serta” “Entotheonella palauensis” “Entotheonella factor” “Endowatersipora glebosa” “Endoriftia persephonae” “Endonucleibacter bathymodioli” “Endolissoclinum faulkneri” “Endobugula sertula” “Endobugula glebosa” “Endecteinascidia fromenterensis” “Electrothrix marina” “Electrothrix japonica” Electrothrix communis Ts Electrothrix arhusiensis “Electronema palustre” “Electronema nielsenii” “Ecksteinia adelgidicola” “Doolittlea endobia” “Desulfonatronobulbus propionicus” “Desulfofervidus auxilii” “Dactylopiibacterium carminicum” “Cyrtobacter comes” “Curculioniphilus buchneri” “Cryptoprodota polytropus” “Criblamydia” “Criblamydia sequanensis” “Contubernalis alkaliaceticus” “Contendibacter odensensis” “Consessor aphidicola” “Competibacter phosphatis” “Competibacter denitrificans” “Combothrix italica” “Cochliopodiiphilus cryoturris” “Clavichlamydia salmonicola” “Chryseopegocella kryptomonas” “Chlorotrichoides halophilum” “Chloroploca asiatica” “Chloranaerofilum corporosum” “Cenarchaeum symbiosum” “Catenimonas italica” “Cardinium hertigii” “Carbonibacillus altaicus” “Captivus acidiprotistae” “Calescibacterium nevadense” “Calditenuis aerorheumatis” “Caldatribacterium saccharofermentans” “Caldatribacterium californiense” “Caldarchaeum subterraneum” “Caenarcanum bioreactoricola” “Brocadia sapporonensis” “Brocadia anammoxidans” “Brevifilum fermentans” “Blochmanniella vafra” “Blochmanniella pennsylvanica” “Blochmanniella myrmotrichis” “Blochmanniella floridana” “Blochmanniella camponoti” “Bandiella euplotis” “Atelocyanobacterium thalassae” “Aquiluna rubra” “Anammoximicrobium moscoviense” “Anammoxiglobus propionicus” “Amphibiichlamydia salamandrae” “Amphibiichlamydia ranarum” “Amoebophilus asiaticus” “Amoebinatus massiliensis” “Aminicenans sakinawicola” “Altimarinus pacificus” “Altarchaeum hamiconexum” “Allospironema culicis” “Allocryptoplasma californiense” “Allobeggiatoa salina” “Aerophobus profundus” “Aenigmatarchaeum subterraneum” “Adiacens aphidicola” “Actinomarina minuta” “Actinochlamydia pangasianodontis” “Actinochlamydia clariatis” “Aciduliprofundum boonei” “Acetithermum autotrophicum” “Accumulibacter aalborgensis” “Promineifilum breve” “Promineifilum” Muiribacterium halophilum Ts Kapaibacterium thiocyanatum Ts Kapaibacterium Ca. Branchiomonas cystocola “Methanosuratincola” “Methanosuratincola petrocarbonis” Ca. Methanomethylicus oleisabuli Ca. Methanomethylicus mesodigestus Ca. Methanomethylicus Ca. Methanomethylicia Cloacimonas Cloacimonas acidaminivorans Ts “Izemoplasma acidinucleici” Sulfuritelmatomonas “Sulfuritelmatobacter” “Sulfuripaludibacter” Kryptonium thompsonii Ts Ca. Caldarchaeum Ca. Methylumidiphilus alinenensis Ca. Altiarchaeum Ca. Carsonella ruddii Ca. Carsonella Ca. Methanofastidiosum methylothiophilum Ca. Methanofastidiosum “Methanofastidiosia” “Fermentibacterales” Ca. Fermentibacteraceae Ca. Fermentibacter Ca. Fermentibacter danicus “Fermentibacteria” Ca. Allofontibacter communis Ca. Allofontibacter
Abstract
We here present annotated lists of names ofCandidatustaxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status ofCandidatustaxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names ofCandidatustaxa with additio

CANDIDATUS LIST No. 3. Lists of names of prokaryotic Candidatus taxa

Citation
Oren, Garrity (2022). International Journal of Systematic and Evolutionary Microbiology 72 (1)
Names
“Weimeria bifida” “Thiosymbium robbeae” “Theodorhartigia pinicola” “Synechococcus calcipolaris” “Stammera capsulata” “Spiroplasma holothuriicola” “Sedimenticola endophacoides” “Roseilinea gracilis” “Rickettsia mahosoti” “Rickettsia laoensis” “Reconciliibacillus cellulosivorans” “Pseudomonas adelgistsugae” “Profftia laricis” “Profftia japonica” “Pleuronema testarum” “Pleuronema perforans” “Piscichlamydia cyprini” “Peptoniphilus massiliensis” “Parafinniella ignota” “Paracaedimonas acanthamoebae” “Ozemibacter sibiricus” “Tokpelaia hoelldobleri” “Neowolbachia serbiensis” “Neoehrlichia tanzaniensis” “Nardonella hylobii” “Nardonella dryophthoridicola” “Mycoplasma haematomelis” “Treponema suis” “Typhincola belonochilicola” “Vallotia japonica” “Vallotia laricis” “Anthektikosiphon” “Aminobacteroides” “Acidifodinimicrobium” “Abditibacter” “Undinarchaeaceae” “Thiobarbaceae” “Tepidaquicellaceae” “Nanohalobiaceae” “Nanogingivalaceae” “Magnetomoraceae” “Macinerneyibacteriaceae” “Hakubellaceae” “Fermentimicrarchaeaceae” “Chazhemtonibacteriaceae” “Aminobacteroidaceae” “Adiutricaceae” “Tepidaquicellales” “Nanohalobiales” “Nanogingivalales” “Naiadarchaeales” “Methylospongiales” “Macinerneyibacteriales” “Hakubellales” “Guanabaribacteriales” “Mycoplasma erythrocervae” “Methanoflorens crillii” “Mastigocoleus perforans” “Liberibacter brunswickensis” “Ischnodemia utriculi” “Halobeggiatoa borealis” “Forterrea multitransposorum” “Fibrimonas termitidis” “Finniella dimorpha” “Euplotella sexta” “Entotheonella gemina” “Fermentimicrarchaeales” “Desulfofervidales” “Adiutricales” “Endohaliclona renieramycinifaciens” “Ehrlichia shimanensis” “Ehrlichia regneryi” “Didemniditutus mandelae” Desulfosporosinus infrequens “Desulfopertinax cowenii” “Cytophaga massiliensis” “Cuticulibacterium kirbyi” “Clostridium timonense” “Clostridium massiliense” “Cibionibacter quicibialis” “Brocadia braziliensis” “Borrelia fainii” “Borrelia ivorensis” “Borrelia africana” “Bartonella rudakovii” “Bartonella negevensis” “Bartonella khokhlovae” “Bartonella gerbillinarum” “Undinarchaeia” “Syntrophaliphaticia” “Nanosyncoccia” “Nanoperiodontomorbia” “Nanohalobiia” “Macinerneyibacteriia” “Desulfofervidia” “Bandiella numerosa” “Azospirillum massiliense” “Arocatia carayonii” “Aramenus sulfurataquae” “Annandiella pinicola” “Annandiella adelgistsugae” “Anaerococcus timonensis” “Anaerococcus phoceensis” “Anaerococcus massiliensis” “Anadelfobacter sociabilis” “Acidiflorens stordalenmirensis” “Theodorhartigia” “Stammera” “Rubidus” “Roseilinea” “Reconciliibacillus” “Pleuronema” “Parafinniella” “Paracaedimonas” “Ozemibacter” “Nitrobium” “Neowolbachia” “Ischnodemia” “Forterrea” “Fibrimonas” “Euplotella” “Endohaliclona” “Didemniditutus” “Cuticulibacterium” “Cibionibacter” “Changshengia” “Arocatia” “Aramenus” “Annandiella” “Acidiflorens” “Ozemibacteraceae” “Fibrimonadaceae” “Ozemibacterales” “Methanoflorentales” “Fibrimonadales” “Caenarcanales” “Ozemibacteria” “Saccharimonadia” Elulimicrobiia
Abstract

Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture

Citation
Gilroy et al. (2021). PeerJ 9
Names
“Mediterraneibacter excrementigallinarum” “Ruthenibacterium merdavium” “Gemmiger stercoravium” “Eisenbergiella intestinipullorum” “Merdibacter merdavium” “Enterocloster excrementipullorum” “Borkfalkia stercoripullorum” “Gemmiger stercoripullorum” “Merdibacter merdigallinarum” “Intestinimonas stercoravium” “Limosilactobacillus intestinipullorum” “Mediterraneibacter pullistercoris” “Faecalibacterium gallistercoris” “Borkfalkia excrementigallinarum” “Mediterraneibacter stercoripullorum” “Anaerotignum merdipullorum” “Fusicatenibacter merdavium” “Anaerostipes excrementavium” “Blautia pullistercoris” “Hungatella pullicola” “Borkfalkia faecipullorum” “Acetatifactor stercoripullorum” “Mediterraneibacter vanvlietii” “Eisenbergiella stercoravium” “Butyricicoccus avistercoris” “Blautia stercorigallinarum” “Acutalibacter stercorigallinarum” “Mediterraneibacter excrementavium” “Corynebacterium faecigallinarum” “Phocaeicola excrementigallinarum” “Blautia merdavium” “Anaerostipes avistercoris” “Dietzia intestinigallinarum” “Mediterraneibacter faecigallinarum” “Mediterraneibacter faecipullorum” “Dietzia intestinipullorum” “Alistipes stercoravium” “Eisenbergiella merdavium” “Ligilactobacillus avistercoris” “Eisenbergiella merdigallinarum” “Nosocomiicoccus stercorigallinarum” “Mailhella merdavium” “Fournierella excrementigallinarum” “Fournierella merdavium” “Desulfovibrio gallistercoris” “Blautia merdipullorum” “Phocaeicola faecigallinarum” “Alistipes avicola” “Bariatricus faecipullorum” “Desulfovibrio intestinavium” “Brachybacterium merdavium” “Brevibacterium intestinavium” “Agathobaculum intestinipullorum” “Limosilactobacillus excrementigallinarum” “Mediterraneibacter merdigallinarum” “Fournierella merdigallinarum” “Mediterraneibacter pullicola” “Mediterraneibacter merdipullorum” “Microbacterium stercoravium” “Collinsella stercoripullorum” “Ligilactobacillus excrementavium” “Mucispirillum faecigallinarum” “Janibacter merdipullorum” “Lactobacillus pullistercoris” “Atopostipes pullistercoris” “Gemmiger excrementavium” “Fournierella merdipullorum” “Ruania gallistercoris” “Tidjanibacter faecipullorum” “Companilactobacillus pullicola” “Rothia avicola” “Rubneribacter avistercoris” “Sphingobacterium stercorigallinarum” “Intestinimonas merdavium” “Luteimonas excrementigallinarum” “Alistipes intestinigallinarum” “Tetragenococcus pullicola” “Eisenbergiella pullistercoris” “Agathobaculum merdavium” “Evtepia faecavium” “Barnesiella excrementavium” “Acutalibacter pullistercoris” “Anaerofilum excrementigallinarum” “Evtepia faecigallinarum” “Gemmiger excrementipullorum” “Anaerobiospirillum pullistercoris” “Acinetobacter avistercoris” “Limosilactobacillus merdigallinarum” “Desulfovibrio intestinigallinarum” “Blautia stercoravium” “Barnesiella excrementigallinarum” “Gemmiger faecavium” “Alectryobacillus” “Alectryobacillus merdavium”
Abstract
Background The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. Results We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all (n = 582) relevant publicly available chicken metagenomes, to c

Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods

Citation
Protasov et al. (2023). Frontiers in Microbiology 14
Names
“Methanorudis spinitermitis” “Bathycorpusculum hydrogenotrophicum” “Methanolapillus ohkumae” “Methanovirga procula” “Methanovirga meridionalis” “Methanovirga basalitermitum” “Methanovirga australis” “Methanovirga aequatorialis” “Methanovirga” “Methanorudis” “Methanoflexus mossambicus” “Methanoflexus curvatus” “Methanoflexus” “Methanobaculum cuticularis” “Methanobaculum” “Methanobinarius endosymbioticus” “Methanobinarius arboriphilus” “Methanobinarius” “Methanarmilla boviskoreani” “Methanarmilla wolinii” “Methanocatella woesei” “Methanocatella thaueri” “Methanocatella oralis” “Methanocatella millerae” “Methanocatella gottschalkii” “Methanocatella smithii” “Methanocatella” “Methanofilum arcanum” “Bathycorpusculum soli” “Bathycorpusculum” “Methanarmilla” “Methanacia filiformis” “Methanacia” “Methanorbis basalitermitum” “Methanorbis furvi” “Methanorbis rubei” “Methanorbis” “Bathycorpusculum termitum” “Bathycorpusculum fermentans” “Methanofrustulum” “Methanoplasma glyptotermitis” “Methanoplasma porotermitis” “Methanoplasma reticulitermitis” “Methanimicrococcus hacksteinii” “Methanimicrococcus hongohii” “Methanimicrococcus odontotermitis” “Methanimicrococcus stummii” “Methanolapillus africanus” “Methanolapillus millepedarum” “Bathycorpusculum terrae” “Bathycorpusculum grumuli” “Bathycorpusculum acidaminoxidans” “Bathycorpusculum acetigenes” “Methanomicula labiotermitis” “Methanomicula” “Methanolapillus” “Methanofilum” “Methanofrustulum fimipullorum” “Methanoplasma cognatum” “Methanimicrococcus labiotermitis” “Bathycorpusculaceae”
Abstract
Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gen

An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis

Citation
Strunecký et al. (2023). Journal of Phycology 59 (1)
Names
Heteroleibleinia Dapis Gloeobacterales Spirulinales Spirulinaceae Spirulina Nodulariaceae Aliinostoc Prochlorococcus Microcoleaceae Microcoleus Ancylothrix Phormidium Cyanogastrum Merismopedia Pseudoncobyrsa Dzensia Hormothece Entophysalis Cyanostylon Gloeothece Coelosphaerium Aphanocapsa Crocosphaera Eucapsis Cyanoaggregatum Synechocystis Coelosphaeriopsis Siphonosphaera Cyanotetras Cyanogranis Cyanocatena Pannus Cyanonephron Woronichinia Mantellum Chalicogloea Chroococcaceae Asterocapsa Pseudanabaena Coelomoron Microcystaceae Gomontiellales Gomontiella Gomontiellaceae Chroococcus Nostocales Nostocaceae Synechococcaceae Rivularia Rivulariaceae Chroococcales Geminocystaceae Cyanophyceae Leptolyngbyales Leptolyngbya
Abstract
Cyanobacterial taxonomy is facing a period of rapid changes thanks to the ease of 16S rRNA gene sequencing and established workflows for description of new taxa. Since the last comprehensive review of the cyanobacterial system in 2014 until 2021, at least 273 species in 140 genera were newly described. These taxa were mainly placed into previously defined orders and families although several new families were proposed. However, the classification of most taxa still relied on hierarchical relatio

Proposal of names for 329 higher rank taxa defined in the Genome Taxonomy Database under two prokaryotic codes

Citation
Chuvochina et al. (2023). FEMS Microbiology Letters
Names
Leptolyngbyaceae “Poriferisulfidales” “Kapaibacteriia” “Cloacimonadaceae” “Cloacimonadales” “Cloacimonadia” “Methylomirabilota” “Desulforudaceae” “Thermobaculales” “Thermobaculaceae” “Tenderiales” “Tenderiaceae” “Saccharimonadales” “Saccharimonadaceae” “Puniceispirillales” “Puniceispirillaceae” “Pseudothioglobaceae” “Promineifilales” “Promineifilaceae” “Obscuribacteraceae” “Nucleicultricaceae” “Muiribacteriia” “Muiribacteriales” “Muiribacteriaceae” “Methylomirabilia” “Methylomirabilales” “Methylomirabilaceae” “Magnetobacteriaceae” “Kapaibacteriales” “Kapaibacteriaceae” “Johnevansiales” “Johnevansiaceae” “Hepatoplasmataceae” “Hepatobacteraceae” “Bipolaricaulia” “Bipolaricaulaceae” “Bipolaricaulales” “Azobacteroidaceae” “Hydrothermaceae” “Hydrothermales” “Hydrothermia” “Binatia” “Binatales” “Binataceae”
Abstract
Abstract The Genome Taxonomy Database (GTDB) is a taxonomic framework that defines prokaryotic taxa as monophyletic groups in concatenated protein reference trees according to systematic criteria. This has resulted in a substantial number of changes to existing classifications (https://gtdb.ecogenomic.org). In the case of union of taxa, GTDB names were applied based on the priority of publication. The division of taxa or change in rank led to the formation of new Latin names above

A comprehensive overview of the Chloroflexota community in wastewater treatment plants worldwide

Citation
Petriglieri et al. (2023). mSystems 8 (6)
Names
“Flexifilaceae” “Flexifilum” “Flexifilum affine” “Flexifilum breve” “Flexicrinis” “Flexicrinis proximus” “Flexicrinis affinis” “Leptovillus” “Leptovillus affinis” “Leptovillus gracilis” “Leptofilum” “Leptofilum proximum” “Leptofilum gracile” “Promineofilum glycogenicum” “Trichofilum” “Trichofilum aggregatum” “Hadersleviella” “Hadersleviella danica” “Villigracilaceae” “Villigracilis saccharophilus” “Villigracilis proximus” “Villigracilis affinis” “Villigracilis” “Villigracilis propinquus” “Villigracilis adiacens” “Villigracilis vicinus” “Defluviilinea proxima” “Defluviilinea” “Defluviilinea gracilis” “Brachythrix” “Brachythrix odensensis” “Avedoeria” “Avedoeria danica” “Epilineales” “Epilineaceae” “Epilinea” “Epilinea brevis”
Abstract
ABSTRACT Filamentous Chloroflexota are abundant in activated sludge wastewater treatment plants (WWTPs) worldwide and are occasionally associated with poor solid-liquid separation or foaming, but most of the abundant lineages remain undescribed. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide, using high-quality metagenome-assembled genomes (MAGs) and 16S rRNA amplicon data from 740 Danish and global WWTPs. Many novel taxa were descri

Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle

Citation
Li et al. (2023). Nature Communications 14 (1)
Names
“Kuafucaenimonas” “Kuafuhalomonas” “Xihepedomonas” “Xihelimnomonas” “Xihecaenimonas” “Xihemicrobium” “Xihebacterium” “Kuafubacterium” “Xihemicrobium aquatica” “Xihemicrobium phototrophica” “Xihebacterium aquatica” “Xihebacterium glacialis” “Xihebacterium phototrophica” “Xihecaenibacterium phototrophica” “Xihemonas phototrophica” “Xihelimnobacterium” “Xihelimnobacterium phototrophica” “Houyihalomonas” “Xihecaenibacterium” “Xihemonas” “Xihehalomonas” “Kuafubacteriaceae” “Kuafubacteriales” “Xihecaenimonas phototrophica” “Xihelimnomonas phototrophica” “Xihepedomonas phototrophica” “Kuafuhalomonas phototrophica” “Kuafucaenimonas phototrophica” “Kuafubacterium phototrophica” “Kuafubacteria” “Xihemonas sinensis” “Xihehalomonas phototrophica” “Houyihalomonas phototrophica” “Houyibacteriaceae” “Houyibacterium” “Houyibacterium oceanica”
Abstract
AbstractPhotosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction cent

Genomic Insights Into the Archaea Inhabiting an Australian Radioactive Legacy Site

Citation
Vázquez-Campos et al. (2021). Frontiers in Microbiology 12
Names
Ca. Micrarchaeota Ca. Methanoperedens Ca. Methanoperedenaceae “Tiddalikarchaeum anstoanum” Ca. Tiddalikarchaeaceae “Gugararchaeum adminiculabundum” Ca. Gugararchaeaceae Ca. Gugararchaeum Ca. Gugararchaeales Ca. Burarchaeum Ca. Burarchaeum australiense Ca. Anstonella stagnisolia Ca. Burarchaeaceae Ca. Anstonellaceae Ca. Burarchaeales Ca. Bilamarchaeum Ca. Anstonella Ca. Bilamarchaeum dharawalense Ca. Bilamarchaeaceae Ca. Norongarragalina Ca. Anstonellales Ca. Norongarragalina meridionalis Ca. Micrarchaeaceae Ca. Norongarragalinaceae Ca. Micrarchaeales Ca. Norongarragalinales “Tiddalikarchaeum” Ca. Micrarchaeia Ca. Tiddalikarchaeales “Nanoarchaeia”
Abstract
During the 1960s, small quantities of radioactive materials were co-disposed with chemical waste at the Little Forest Legacy Site (LFLS, Sydney, Australia). The microbial function and population dynamics in a waste trench during a rainfall event have been previously investigated revealing a broad abundance of candidate and potentially undescribed taxa in this iron-rich, radionuclide-contaminated environment. Applying genome-based metagenomic methods, we recovered 37 refined archaeal MAGs, mainly