AbstractProtists frequently host diverse bacterial symbionts, in particular those affiliated with the order Holosporales (Alphaproteobacteria). All characterised members of this bacterial lineage have been retrieved in obligate association with a wide range of eukaryotes, especially multiple protist lineages (e.g. amoebozoans, ciliates, cercozoans, euglenids, and nucleariids), as well as some metazoans (especially arthropods and related ecdysozoans). While the genus Paramecium and other ciliates have been deeply investigated for the presence of symbionts, known members of the family “Candidatus Paracaedibacteraceae” (Holosporales) are currently underrepresented in such hosts. Herein, we report the description of “Candidatus Intestinibacterium parameciiphilum” within the family “Candidatus Paracaedibacteraceae”, inhabiting the cytoplasm of Paramecium biaurelia. This novel bacterium is almost twice as big as its relative “Candidatus Intestinibacterium nucleariae” from the opisthokont Nuclearia and does not present a surrounding halo. Based on phylogenetic analyses of 16S rRNA gene sequences, we identified six further potential species-level lineages within the genus. Based on the provenance of the respective samples, we investigated the environmental distribution of the representatives of “Candidatus Intestinibacterium” species. Obtained results are consistent with an obligate endosymbiotic lifestyle, with protists, in particular freshwater ones, as hosts. Thus, available data suggest that association with freshwater protists could be the ancestral condition for the members of the “Candidatus Intestinibacterium” genus.
Symbiotic relationships are ubiquitous throughout the world’s oceans, yet for many marine organisms, including those in the high latitudes, little is understood about symbiotic associations and functional relationships. From a recently determined genome sequence of a filter-feeding basket star from Argentina, Gorgonocephalus chilensis, we discovered a novel Mycoplasma species with a 796Kb genome (CheckM completeness of 97.9%, G+C content = 30.1%). Similar to other Mycoplasma spp. within Mycoplasmatota, genomic analysis of the novel organism revealed reduced metabolic pathways including incomplete biosynthetic pathways, suggesting an obligate association with their basket star host. Results of 16S rRNA and multi-locus phylogenetic analyses revealed that this organism belonged to a recently characterized non-free-living lineage of Mycoplasma spp. specifically associated with marine invertebrate animals. Thus, the name “Candidatus Mycoplasma mahonii” is proposed for this novel species. Based on 16S rRNA PCR-screening, we found that Ca. M. mahonii also occurs in Gorgonocephalus eucnemis from the Northwest Pacific and other Gorgonocephalus chilensis from Argentinian waters. The level of sequence conservation within Ca. M. mahonii is considerable between widely disparate high-latitude Gorgonocephalus species, suggesting that oceanic dispersal of this microbe may be greater than excepted.
The mitochondrial genomes of two vector psyllids of the ‘Candidatus Phytoplasma mali’, Cacopsylla picta and C. melanoneura, were sequenced using high-throughput sequencing on the Illumina platform. The main objective of the study was to describe their mitogenome and characterize their genetic variability and the potential changes in the context of the observed global warming. The four complete sequences for C. picta, 14,801 bp and 14,802 bp in length, two complete and one partial sequence for C. melanoneura, ranging from 14,879 bp to 14,881 bp in length, were obtained for the first time for these European apple psyllids. The detected intraspecies mtDNA identity was highly similar (99.85–99.98%), the identity’s similarity with other Cacopsylla species varied between 79.79 and 86.64%. The mitogenomes showed a typical mitochondrial DNA structure with 13 protein-coding genes, 2 rRNA genes and 22 tRNA genes; the presence of CGGA motif in the ND1-trnS2 junction was detected in both species. Phylogenetic analysis placed both species in close relationship with C. burckhardti within the Cacopsylla clade-I O group. The analysis of complete mitogenomes and of partial COI sequences of fifty-two Cacopsylla individuals showed a high homogeneity of genotypes over 15 years and among the different localities in the Czech Republic.
Bathyarchaeia are widespread in various anoxic ecosystems and are considered one of the most abundant microbial groups on the earth. There are only a few reports of laboratory cultivation of Bathyarchaeia, and none of the representatives of this class has been isolated in pure culture. Here, we report a sustainable cultivation of the Bathyarchaeia archaeon (strain M17CTs) enriched from anaerobic sediment of a coastal lake. The cells of strain M17CTs were small non-motile cocci, 0.4–0.7 μm in diameter. The cytoplasmic membrane was surrounded by an S-layer and covered with an outermost electron-dense sheath. Strain M17CTs is strictly anaerobic mesophile. It grows at 10–45°C (optimum 37°C), at pH 6.0–10.0 (optimum 8.0), and at NaCl concentrations of 0–60 g l−1 (optimum 20 g l−1). Growth occurred in the presence of methoxylated aromatic compounds (3,4-dimethoxybenzoate and vanillate) together with complex proteinaceous substrates. Dimethyl sulfoxide and nitrate stimulated growth. The phylogenomic analysis placed strain M17CTs to BIN-L-1 genus-level lineage from the BA1 family-level lineage and B26-1 order-level lineage (former subgroup-8) within the class Bathyarchaeia. The complete genome of strain M17CTs had a size of 2.15 Mb with a DNA G + C content of 38.1%. Based on phylogenomic position and phenotypic and genomic properties, we propose to assign strain M17CTs to a new species of a novel genus Bathyarchaeum tardum gen. nov., sp. nov. within the class Bathyarchaeia. This is the first sustainably cultivated representative of Bathyarchaeia. We propose under SeqCode the complete genome sequence of strain M17CTs (CP122380) as a nomenclatural type of Bathyarchaeum tardum, which should be considered as a type for the genus Bathyarchaeum, which is proposed as a type for the family Bathyarchaeaceae, order Bathyarchaeales, and of the class Bathyarchaeia.
The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including ‘Candidiatus Phytoplasma solani’ are unknown. Six putative pathogenicity factors/effectors from six different strains of ‘Ca. P. solani’ were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after Agrobacterium-mediated transient transformation with the pathogenicity factor/effector constructs using confocal microscopy, pull-down, and co-immunoprecipitation, and enzyme assays. Candidate pathogenicity factors/effectors were shown to modulate plant carbohydrate metabolism and the ascorbate–glutathione cycle and to induce autophagosomes. PoStoSP06, PoStoSP13, and PoStoSP28 were localized in the nucleus and cytosol. The most active effector in the processes studied was PoStoSP06. PoStoSP18 was associated with an increase in phosphoglucomutase activity, whereas PoStoSP28, previously annotated as an antigenic membrane protein StAMP, specifically interacted with phosphoglucomutase. PoStoSP04 induced only the ascorbate–glutathione cycle along with other pathogenicity factors/effectors. Candidate pathogenicity factors/effectors were involved in reprogramming host carbohydrate metabolism in favor of phytoplasma own growth and infection. They were specifically associated with three distinct metabolic pathways leading to fructose-6-phosphate as an input substrate for glycolysis. The possible significance of autophagosome induction by PoStoSP28 is discussed.
Abstract
Objectives
In order to provide a better insight into the functional capacity of the human gut microbiome, we isolated a novel bacterium, “Candidatus Intestinicoccus colisanans” gen. nov. sp. nov., and performed whole genome sequencing. This study will provide new insights into the functional potential of this bacterium and its role in modulating host health and well-being. We expect that this data resource will be useful in providing additional insight into the diversity and functional potential of the human microbiome.
Data description
Here, we report the first draft genome sequences of “Candidatus Intestinicoccus colisanans” strains MH27-1 and MH27-2, recovered from faeces collected from healthy human donors. The genomes were sequenced using short-read Illumina technology and whole-genome-based comparisons and phylogenomics reconstruction indicate that “Candidatus Intestinicoccus colisanans” represents a novel genus and species within the family Acutalibacteraceae. Both genomes were estimated to be > 98% completed and to range in size from 2.9 to 3.3 Mb with a G + C content of approximately 51%. The gene repertoire of “Candidatus Intestinicoccus colisanans” indicate it is likely a saccharolytic gut bacterium.
La producción de limón persa (LP) es importante para el estado de Veracruz, México. Sin embargo, se ve afectada por el Huanglongbing (HLB), causada por Candidatus Liberibacter asiaticus (CLas), un patógeno biotrófico obligado. LP presenta un cierto nivel de tolerancia al HLB, por tanto, resulta relevante estudiar su respuesta de defensa mediada por ácido salicílico (SA). Tres genes con capacidad de participar en la ruta de respuesta por SA, conocidos como NtSABP, han sido identificados en Nicotiana tabacum; sin embargo, se desconoce la presencia y actividad de dichos genes en LP en respuesta al HLB. En este trabajo se identificaron proteínas homólogas tipo SABP en el transcriptoma de LP y se determinó su grado de expresión diferencial durante la infección con CLas. Se realizó un tBLASTn en el transcriptoma de LP usando como modelo secuencias de las proteínas SABP de cinco diferentes especies, incluyendo N. tabacum. Se reconstruyó y comparó el modelo 3D de las proteínas SABP de N. tabacum y C. latifolia. Con los análisis de tBLASTn, la reconstrucción filogenética y la estructura tridimensional se logró identificar el homólogo directo de cada gen NtSABP en LP. Interesantemente, los genes ClSABP1, ClSABP2 y ClSABP3 mostraron represión en plantas infectadas con CLas. En LP hay al menos un homólogo para cada gen NtSABP. Durante la infección por CLas, estos genes se encuentran ligeramente reprimidos.