Applied Microbiology and Biotechnology


Publications (230)

Candidatus Subterrananammoxibiaceae,” a New Anammox Bacterial Family in Globally Distributed Marine and Terrestrial Subsurfaces

Citation
Zhao et al. (2023). Applied and Environmental Microbiology 89 (8)
Names (1)
Ca. Subterrananammoxibiaceae
Subjects
Applied Microbiology and Biotechnology Biotechnology Ecology Food Science
Abstract
Microorganisms called anammox bacteria are efficient in removing bioavailable nitrogen from many natural and human-made environments. They exist in almost every anoxic habitat where both ammonium and nitrate/nitrite are present.

Candidatus Alkanophaga archaea from Guaymas Basin hydrothermal vent sediment oxidize petroleum alkanes

Citation
Zehnle et al. (2023). Nature Microbiology 8 (7)
Names (3)
Ca. Thermodesulfobacterium syntrophicum Ca. Syntrophoarchaeum Ca. Alkanophaga
Subjects
Applied Microbiology and Biotechnology Cell Biology Genetics Immunology Microbiology Microbiology (medical)
Abstract
AbstractMethanogenic and methanotrophic archaea produce and consume the greenhouse gas methane, respectively, using the reversible enzyme methyl-coenzyme M reductase (Mcr). Recently, Mcr variants that can activate multicarbon alkanes have been recovered from archaeal enrichment cultures. These enzymes, called alkyl-coenzyme M reductase (Acrs), are widespread in the environment but remain poorly understood. Here we produced anoxic cultures degrading mid-chain petroleum n-alkanes between pentane (C5) and tetradecane (C14) at 70 °C using oil-rich Guaymas Basin sediments. In these cultures, archaea of the genus Candidatus Alkanophaga activate the alkanes with Acrs and completely oxidize the alkyl groups to CO2. Ca. Alkanophaga form a deep-branching sister clade to the methanotrophs ANME-1 and are closely related to the short-chain alkane oxidizers Ca. Syntrophoarchaeum. Incapable of sulfate reduction, Ca. Alkanophaga shuttle electrons released from alkane oxidation to the sulfate-reducing Ca. Thermodesulfobacterium syntrophicum. These syntrophic consortia are potential key players in petroleum degradation in heated oil reservoirs.

Candidatus Nealsonbacteria” Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture

Citation
Chen et al. (2023). Applied and Environmental Microbiology 89 (5)
Names (1)
Ca. Nealsonbacteria
Subjects
Applied Microbiology and Biotechnology Biotechnology Ecology Food Science
Abstract
An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny “ Candidatus Nealsonbacteria” cells attached to a large Methanothrix cell, revealing a novel episymbiosis.

Effects of reducing, stabilizing, and antibiotic agents on “Candidatus Kuenenia stuttgartiensis”

Citation
Ude et al. (2023). Applied Microbiology and Biotechnology 107 (5-6)
Names (1)
Ca. Kuenenia stuttgartiensis
Subjects
Applied Microbiology and Biotechnology Biotechnology General Medicine
Abstract
Abstract Anaerobic ammon ium oxidizing (anammox) bacteria oxidize ammonium and reduce nitrite, producing N2, and could play a major role in energy-optimized wastewater treatment. However, sensitivity to various environmental conditions and slow growth currently hinder their wide application. Here, we attempted to determine online the effect of environmental stresses on anammox bacteria by using an overnight batch activity test with whole cells, in which anammox activity was calculated by quantifying N2 production via headspace-pressure monitoring. A planktonic mixed culture dominated by “Candidatus Kuenenia stuttgartiensis” strain CSTR1 was cultivated in a 30-L semi-continuous stirring tank reactor. In overnight resting-cell anammox activity tests, oxygen caused strong inhibition of anammox activity, which was reversed by sodium sulfite (30 µM). The tested antibiotics sulfamethoxazole, kanamycin, and ciprofloxacin elicited their effect on a dose-dependent manner; however, strain CSTR1 was highly resistant to sulfamethoxazole. Anammox activity was improved by activated carbon and Fe2O3. Protein expression analysis from resting cells after anammox activity stimulation revealed that NapC/NirT family cytochrome c (KsCSTR_12840), hydrazine synthase, hydrazine dehydrogenase, hydroxylamine oxidase, and nitrate:nitrite oxidoreductase were upregulated, while a putative hydroxylamine oxidoreductase HAO (KsCSTR_49490) was downregulated. These findings contribute to the growing knowledge on anammox bacteria physiology, eventually leading to the control of anammox bacteria growth and activity in real-world application. Key Points • Sulfite additions can reverse oxygen inhibition of the anammox process • Anammox activity was improved by activated carbon and ferric oxide • Sulfamethoxazole marginally affected anammox activity Graphical abstract

A novel and diverse group of Candidatus Patescibacteria from bathypelagic Lake Baikal revealed through long-read metagenomics

Citation
Haro-Moreno et al. (2023). Environmental Microbiome 18 (1)
Names (1)
Ca. Patescibacteria
Subjects
Applied Microbiology and Biotechnology Genetics Microbiology
Abstract
Abstract Background Lake Baikal, the world’s deepest freshwater lake, contains important numbers of Candidatus Patescibacteria (formerly CPR) in its deepest reaches. However, previously obtained CPR metagenome-assembled genomes recruited very poorly indicating the potential of other groups being present. Here, we have applied for the first time a long-read (PacBio CCS) metagenomic approach to analyze in depth the Ca. Patescibacteria living in the bathypelagic water column of Lake Baikal at 1600 m. Results The retrieval of nearly complete 16S rRNA genes before assembly has allowed us to detect the presence of a novel and a likely endemic group of Ca. Patescibacteria inhabiting bathypelagic Lake Baikal. This novel group seems to possess extremely high intra-clade diversity, precluding complete genomes' assembly. However, read binning and scaffolding indicate that these microbes are similar to other Ca. Patescibacteria (i.e. parasites or symbionts), although they seem to carry more anabolic pathways, likely reflecting the extremely oligotrophic habitat they inhabit. The novel bins have not been found anywhere, but one of the groups appears in small amounts in an oligotrophic and deep alpine Lake Thun. We propose this novel group be named Baikalibacteria. Conclusion The recovery of 16S rRNA genes via long-read metagenomics plus the use of long-read binning to uncover highly diverse “hidden” groups of prokaryotes are key strategies to move forward in ecogenomic microbiology. The novel group possesses enormous intraclade diversity akin to what happens with Ca. Patescibacteria at the interclade level, which is remarkable in an environment that has changed little in the last 25 million years.

Occurrence, Diversity, and Genomes of “ Candidatus Patescibacteria” along the Early Diagenesis of Marine Sediments

Citation
Zhao et al. (2022). Applied and Environmental Microbiology 88 (24)
Names (1)
Ca. Patescibacteria
Subjects
Applied Microbiology and Biotechnology Biotechnology Ecology Food Science
Abstract
Ultrasmall-celled “ Ca. Patescibacteria” have been estimated to account for one-quarter of the total microbial diversity on Earth, the parasitic lifestyle of which may exert a profound control on the overall microbial population size of the local ecosystems. However, their diversity and metabolic functions in marine sediments, one of the largest yet understudied ecosystems on Earth, remain virtually uncharacterized.