Applied Microbiology and Biotechnology


Publications
253

A Glycolipid Glycosyltransferase with Broad Substrate Specificity from the Marine Bacterium “ Candidatus Pelagibacter sp.” Strain HTCC7211

Citation
Wei et al. (2021). Applied and Environmental Microbiology 87 (14)
Names
Ca. Pelagibacter
Abstract
The bilayer formed by membrane lipids serves as the containment unit for living microbial cells. In the marine environment, it has been firmly established that phytoplankton and heterotrophic bacteria can substitute phospholipids with nonphosphorus sugar-containing glycoglycerolipids in response to phosphorus limitation.

Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments

Citation
Wasmund et al. (2021). Nature Microbiology 6 (7)
Names
Ca. Izemoplasmatales Ca. Izemoplasma “Izemoplasma acidinucleici”
Abstract
AbstractExtracellular DNA is a major macromolecule in global element cycles, and is a particularly crucial phosphorus, nitrogen and carbon source for microorganisms in the seafloor. Nevertheless, the identities, ecophysiology and genetic features of DNA-foraging microorganisms in marine sediments are largely unknown. Here, we combined microcosm experiments, DNA stable isotope probing (SIP), single-cell SIP using nano-scale secondary isotope mass spectrometry (NanoSIMS) and genome-centric metagen

“ Sifarchaeota ,” a Novel Asgard Phylum from Costa Rican Sediment Capable of Polysaccharide Degradation and Anaerobic Methylotrophy

Citation
Farag et al. (2021). Applied and Environmental Microbiology 87 (9)
Names
Ca. Sifarchaeota Ca. Sifarchaeum subterraneus Ca. Sifarchaeum marinoarchaea Ca. Sifarchaeum
Abstract
The exploration of deep marine sediments has unearthed many new lineages of microbes. The finding of this novel phylum of Asgard archaea is important, since understanding the diversity and evolution of Asgard archaea may inform also about the evolution of eukaryotic cells. The comparison of metabolic potentials of the Asgard archaea can help inform about selective pressures the lineages have faced during evolution.

Production of nonulosonic acids in the extracellular polymeric substances of “Candidatus Accumulibacter phosphatis”

Citation
Tomás-Martínez et al. (2021). Applied Microbiology and Biotechnology 105 (8)
Names
“Accumulibacter phosphatis” “Accumulibacter”
Abstract
Abstract Nonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as an important compound in the extracellular matrix of virtually all microbial life and in “Candidatus Accumulibacter phosphatis”, a well-studied polyphosphate-accu