Jiao, Jian-Yu


Publications
10

Metagenomic Discovery of “ Candidatus Parvarchaeales”-Related Lineages Sheds Light on Adaptation and Diversification from Neutral-Thermal to Acidic-Mesothermal Environments

Citation
Rao et al. (2023). mSystems 8 (2)
Names
“Parvarchaeales” “Haiyanarchaeum thermophilum” “Jingweiarchaeum tengchongense” “Parvarchaeum tengchongense” “Haiyanarchaeum” “Jingweiarchaeum” “Haiyanarchaeaceae” “Jingweiarchaeales” “Rehaiarchaeum”
Abstract
“ Candidatus Parvarchaeales” microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments.

Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota

Citation
Seymour et al. (2023). Nature Microbiology 8 (4)
Names
Omnitrophus Omnitrophus fodinae Ts Omnitrophota
Abstract
AbstractCandidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 μm) cells that are found in water, sediments and soils. Omnitro

Metagenomic discovery ofCandidatusParvarchaeales related lineages sheds light on the adaptation and diversification from neutral-thermal to acidic-mesothermal environments

Citation
Rao et al. (2022).
Names
“Haiyanarchaeum” “Jingweiarchaeales” “Jingweiarchaeum” “Parvarchaeales” “Rehaiarchaeum” “Jingweiarchaeum tengchongense” “Haiyanarchaeum thermophilum” “Rehaiarchaeum fermentans” “Parvarchaeum tengchongense” “Haiyanarchaeaceae” “Jingweiarchaeaceae”
Abstract
AbstractCandidatusParvarchaeales, representing a DPANN archaeal group with limited metabolic potentials and reliance on hosts for their growth, were initially found in acid mine drainage (AMD). Due to the lack of representatives, however, their ecological roles and adaptation to extreme habitats such as AMD, as well as how they diverge across the lineage remain largely unexplored. By applying genome-resolved metagenomics, 28Parvarchaeales-associated metagenome-assembled genomes (MAGs) representi

An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea

Citation
Buessecker et al. (2022). Nature Communications 13 (1)
Names
Wolframiiraptor gerlachensis Ts Wolframiiraptor Wolframiiraptoraceae Benthortus lauensis Ts Geocrenenecus dongiae Ts Geocrenenecus arthurdayi Geocrenenecus huangii Terraquivivens ruidianensis Terraquivivens tengchongensis Terraquivivens yellowstonensis Benthortus Geocrenenecus Terraquivivens Terraquivivens tikiterensis Ts Wolframiiraptor sinensis Wolframiiraptor allenii
Abstract
AbstractTrace metals have been an important ingredient for life throughout Earth’s history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredox

Deciphering Symbiotic Interactions of “ Candidatus Aenigmarchaeota” with Inferred Horizontal Gene Transfers and Co-occurrence Networks

Citation
Li et al. (2021). mSystems 6 (4)
Names
Ca. Aenigmarchaeota
Abstract
Recent advances in sequencing technology promoted the blowout discovery of super tiny microbes in the Diapherotrites , Parvarchaeota , Aenigmarchaeota , Nanoarchaeota , and Nanohaloarchaeota (DPANN) superphylum. However, the unculturable properties of the majority of microbes impeded our investigation of their behavior and symbiotic lifestyle in the corresponding c

Comparative Genomics Reveals Thermal Adaptation and a High Metabolic Diversity in “ Candidatus Bathyarchaeia”

Citation
Qi et al. (2021). mSystems 6 (4)
Names
Bathyarchaeia
Abstract
Ca . Bathyarchaeia MAGs from terrestrial hot spring habitats are poorly revealed, though they have been studied extensively in marine ecosystems.

Deciphering symbiotic interactions of ‘Candidatus Aenigmarchaeota’ with inferred horizontal gene transfers and co-occurrence networks

Citation
Li et al. (2020).
Names
Ca. Aenigmarchaeota
Abstract
Abstract Background: ‘Ca. Aenigmarchaeota’ represents an evolutionary branch within the DPANN superphylum. However, their ecological roles and potential host-symbiont interactions are poorly understood.Results: Here, we analyze eight metagenomic-assembled genomes from hot spring habitats and reveal their functional potentials. Although they have limited metabolic capacities, they harbor substantial carbohydrate metabolizing abilities. Further investigation suggests that horizontal gene t

Update on the classification of higher ranks in the phylum Actinobacteria

Citation
Salam et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (2)
Names
Pseudonocardiaceae Amycolatopsis
Abstract
Genome analysis is one of the main criteria for description of new taxa. Availability of genome sequences for all the actinobacteria with a valid nomenclature will, however, require another decade’s works of sequencing. This paper describes the rearrangement of the higher taxonomic ranks of the members of the phylum ‘ Actinobacteria ’, using the phylogeny of 16S rRNA gene sequences and supported by the phylogen

Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea

Citation
Hua et al. (2019). Nature Communications 10 (1)
Names
Ca. Methanoproducendum senex
Abstract
Abstract Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phy