Wolframiiraptoraceae


Citation

Formal styling
Wolframiiraptoraceae Buessecker et al., 2022
Proposed by
Buessecker et al., 2022
Status
Valid (SeqCode)
Register List
seqco.de/r:slp2ijs4 (validated)

Nomenclature

Rank
Family
Syllabication
Wolf.ra.mi.i.rap.to.ra.ce'ae
Etymology
N.L. masc. n. Wolframiiraptor, type genus of the family; -aceae, ending to denote a family; N.L. fem. pl. n. Wolframiiraptoraceae, family of the genus Wolframiiraptor
Nomenclatural type
Wolframiiraptor

Taxonomy

Description
Members of this family are associated with thermal aquatic environments, and have been identified from geothermal springs in China, New Zealand and the USA, and a marine hydrothermal vent in the Western Pacific. Phylogenomic inference robustly recovers the genomes of these organisms as a well-supported monophyletic lineage within the order Caldarchaeales, and delineation of these taxa as a family is supported by Relative Evolutionary Divergence (RED) and Average Amino Acid Identity (AAI). AAI values among designated type genomes for species in this family range between 65 and 85 % within proposed genera, and between 49 and 57 % among members of different genera. The distribution of genes required for oxidative phosphorylation indicate that members of the family may either be strict or facultative anaerobes. Sulfide-dependent respiration may also occur in some members of the family, but this trait is not conserved for all genera. Several putative tungsten-dependent ferredoxin oxidoreductases, specifically aldehyde ferredoxin oxidoreductases (AORs), formaldehyde ferredoxin oxidoreductases (FORs) and glyceraldehyde-3-phosphate ferredoxin oxidoreductases (GAPORs) are encoded by genomes belonging to this family. 
Classification
“Caldarchaeales” » Wolframiiraptoraceae
Parent
“Caldarchaeales”
Children

Metadata

Search sequences
Local history
This name was last modified 9 days ago
Registered by
MarikePalmer 11 months ago
Submitted by
MarikePalmer 14 days ago
Validated by
miguel 9 days ago

Publications (1)

Citation Title
Buessecker et al., 2022, Nature Communications An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea
Proposed this name



© 2022 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license