Rinke, Christian


Publications
11

Proposal of names for 329 higher rank taxa defined in the Genome Taxonomy Database under two prokaryotic codes

Citation
Chuvochina et al. (2023). FEMS Microbiology Letters
Names
Leptolyngbyaceae “Poriferisulfidales” “Kapaibacteriia” “Cloacimonadaceae” “Cloacimonadales” “Cloacimonadia” “Methylomirabilota” “Desulforudaceae” “Thermobaculales” “Thermobaculaceae” “Tenderiales” “Tenderiaceae” “Saccharimonadales” “Saccharimonadaceae” “Puniceispirillales” “Puniceispirillaceae” “Pseudothioglobaceae” “Promineifilales” “Promineifilaceae” “Obscuribacteraceae” “Nucleicultricaceae” “Muiribacteriia” “Muiribacteriales” “Muiribacteriaceae” “Methylomirabilia” “Methylomirabilales” “Methylomirabilaceae” “Magnetobacteriaceae” “Kapaibacteriales” “Kapaibacteriaceae” “Johnevansiales” “Johnevansiaceae” “Hepatoplasmataceae” “Hepatobacteraceae” “Bipolaricaulia” “Bipolaricaulaceae” “Bipolaricaulales” “Azobacteroidaceae” “Hydrothermaceae” “Hydrothermales” “Hydrothermia” “Binatia” “Binatales” “Binataceae”
Abstract
Abstract The Genome Taxonomy Database (GTDB) is a taxonomic framework that defines prokaryotic taxa as monophyletic groups in concatenated protein reference trees according to systematic criteria. This has resulted in a substantial number of changes to existing classifications (https://gtdb.ecogenomic.org). In the case of union of taxa, GTDB names were applied based on the priority of publication. The division of taxa or change in rank led to the formation of new Latin names above

Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages

Citation
Sun et al. (2021). ISME Communications 1 (1)
Names
Ca. Sifarchaeota Ca. Sifarchaeum subterraneus Ca. Sifarchaeum marinoarchaea Ca. Sifarchaeum Ca. Borrarchaeum Ca. Borrarchaeaceae Ca. Jordarchaeia Ca. Sifarchaeia Ca. Jordarchaeales Ca. Sifarchaeales Ca. Jordarchaeaceae Ca. Sifarchaeaceae Ca. Jordarchaeum madagascariense Ca. Jordarchaeum Ca. Borrarchaeum weybense
Abstract
AbstractAsgardarchaeota have been proposed as the closest living relatives to eukaryotes, and a total of 72 metagenome-assembled genomes (MAGs) representing six primary lineages in this archaeal phylum have thus far been described. These organisms are predicted to be fermentative heterotrophs contributing to carbon cycling in sediment ecosystems. Here, we double the genomic catalogue of Asgardarchaeota by obtaining 71 MAGs from a range of habitats around the globe, including the deep subsurface,

Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution

Citation
Dombrowski et al. (2020). Nature Communications 11 (1)
Names
“Undinarchaeum marinum” “Undinarchaeaceae” “Naiadarchaeaceae” “Undinarchaeales” “Naiadarchaeales” “Undinarchaeota” “Undinarchaeia”
Abstract
AbstractThe recently discovered DPANN archaea are a potentially deep-branching, monophyletic radiation of organisms with small cells and genomes. However, the monophyly and early emergence of the various DPANN clades and their role in life’s evolution are debated. Here, we reconstructed and analysed genomes of an uncharacterized archaeal phylum (CandidatusUndinarchaeota), revealing that its members have small genomes and, while potentially being able to conserve energy through fermentation, like

Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life

Citation
Parks et al. (2017). Nature Microbiology 2 (11)
Names
Binatus Binatus soli Ts
Abstract
AbstractChallenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5%