Publications
3534

Sort by date names
Browse by authors subjects journals

Adipokinetic hormone signaling mediates the fecundity ofDiaphorina citriinfected by ‘CandidatusLiberibacter asiaticus’

Citation
Li et al. (2023).
Names
Ca. Liberibacter asiaticus
Abstract
AbstractDiaphorina citriis the primary vector of the bacterium, ‘CandidatusLiberibacter asiaticus’ (CLas) associated with the severe Asian form of huanglongbing.CLas-positiveD. citriare more fecund than theirCLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this present study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increa

Gamma-Aminobutyric Acid Supplementation Boosts the Phytohormonal Profile in ‘Candidatus Liberibacter asiaticus’-Infected Citrus

Citation
Nehela, Killiny (2023). Plants 12 (20)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
The devastating citrus disease, Huanglongbing (HLB), is associated with ‘Candidatus Liberibacter sp.’ and transmitted by citrus psyllids. Unfortunately, HLB has no known sustainable cure yet. Herein, we proposed γ-aminobutyric acid (GABA) as a potential eco-friendly therapeutic solution to HLB. Herein, we used GC/MS-based targeted metabolomics combined with gene expression to investigate the role of GABA in citrus response against HLB and to better understand its relationship(s) with different p

Genomic Insights into Syntrophic Lifestyle of ‘Candidatus Contubernalis alkaliaceticus’ Based on the Reversed Wood–Ljungdahl Pathway and Mechanism of Direct Electron Transfer

Citation
Frolov et al. (2023). Life 13 (10)
Names
“Contubernalis alkaliaceticus”
Abstract
The anaerobic oxidation of fatty acids and alcohols occurs near the thermodynamic limit of life. This process is driven by syntrophic bacteria that oxidize fatty acids and/or alcohols, their syntrophic partners that consume the products of this oxidation, and the pathways for interspecies electron exchange via these products or direct interspecies electron transfer (DIET). Due to the interdependence of syntrophic microorganisms on each other’s metabolic activity, their isolation in pure cultures

Complete genome sequence of “ Candidatus Phytoplasma cynodontis” GY2015, a plant pathogen associated with Bermuda grass white leaf disease in Taiwan

Citation
Cho et al. (2023). Microbiology Resource Announcements 12 (10)
Names
Ca. Phytoplasma cynodontis
Abstract
ABSTRACT The complete genome sequence of “ Candidatus Phytoplasma cynodontis” strain GY2015, which consists of one 498,922-bp circular chromosome, is presented in this work. This uncultivated plant-pathogenic bacterium is associated with Bermuda grass white leaf disease in Taoyuan, Taiwan.

Complete genome sequence of Candidatus Mycobacterium wuenschmannii , a nontuberculous mycobacterium isolated from a captive population of Amazon milk frogs

Citation
Zeineldin et al. (2023). Microbiology Resource Announcements 12 (10)
Names
Ca. Mycobacterium wuenschmannii
Abstract
ABSTRACT A slow growing species of nontuberculous mycobacteria (NTM) was isolated from the liver of an Amazon milk frog. The complete genome of this isolate comprises 5,102,433 bp, exhibiting 66.86% GC content, 4,940 protein-coding sequences, 52 predicted RNA genes, and 39 repeat regions.

Oxygen Uptake Rate as an Indicator of the Substrates Utilized by Candidatus Accumulibacter

Citation
Dorofeev et al. (2023). Water 15 (20)
Names
“Accumulibacter”
Abstract
Candidatus Accumulibacter belongs to phosphate-accumulating organisms (PAOs) which exhibit a cyclic metabolism and are capable of intracellular polyphosphate accumulation and their hydrolysis under feast-famine anaerobic-aerobic cycling. In consortia of activated sludge microorganisms, these bacteria are responsible for enhanced biological phosphorus removal (EBPR). The spectrum of the substrates used by Ca. Accumulibacter remains insufficiently studied. It was investigated by measuring the oxyg

Indications for a genetic basis for big bacteria and description of the giant cable bacterium Candidatus Electrothrix gigas sp. nov

Citation
Geelhoed et al. (2023). Microbiology Spectrum 11 (5)
Names
Electrothrix gigas Electronema Electrothrix Electrothrix communis Ts Electrothrix arhusiensis
Abstract
ABSTRACT Bacterial cells can vary greatly in size, from a few hundred nanometers to hundreds of micrometers in diameter. Filamentous cable bacteria also display substantial size differences, with filament diameters ranging from 0.4 to 8 µm. We analyzed the genomes of cable bacterium filaments from 11 coastal environments of which the resulting 23 new genomes represent 10 novel species-level clades of Candidatus Electrothrix and two clades that putat

The plant pathogenic bacterium Candidatus Liberibacter solanacearum induces calcium-regulated autophagy in midgut cells of its insect vector Bactericera trigonica

Citation
Sarkar et al. (2023). Microbiology Spectrum 11 (5)
Names
“Liberibacter solanacearum”
Abstract
ABSTRACT Autophagy plays an important role against pathogen infection in many organisms; however, little has been done with regard to vector-borne plant and animal pathogens, that sometimes replicate and cause deleterious effects in their vectors. Candidatus Liberibacter solanacearum (CLso) is a fastidious gram-negative phloem-restricted plant pathogen and vectored by the carrot psyllid, Bactericera trigonica . The plant dise

Antineoplastics/dipyrone

Citation
Anonymous (2023). Reactions Weekly 1978 (1)
Names
Abstract

Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle

Citation
Li et al. (2023). Nature Communications 14 (1)
Names
“Houyibacterium oceanica” “Houyibacterium” “Houyibacteriaceae” “Houyihalomonas phototrophica” “Xihehalomonas phototrophica” “Xihemonas sinensis” “Kuafubacteria” “Kuafubacterium phototrophica” “Kuafucaenimonas phototrophica” “Kuafuhalomonas phototrophica” “Xihepedomonas phototrophica” “Xihelimnomonas phototrophica” “Xihecaenimonas phototrophica” “Kuafubacteriales” “Kuafubacteriaceae” “Xihehalomonas” “Xihemonas” “Xihecaenibacterium” “Houyihalomonas” “Xihelimnobacterium phototrophica” “Xihelimnobacterium” “Xihemonas phototrophica” “Xihecaenibacterium phototrophica” “Xihebacterium phototrophica” “Xihebacterium glacialis” “Xihebacterium aquatica” “Xihemicrobium phototrophica” “Xihemicrobium aquatica” “Kuafubacterium” “Xihebacterium” “Xihemicrobium” “Xihecaenimonas” “Xihelimnomonas” “Xihepedomonas” “Kuafuhalomonas” “Kuafucaenimonas”
Abstract
AbstractPhotosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction cent