Linking metabolic phenotypes to pathogenic traits among “Candidatus Liberibacter asiaticus” and its hosts


Citation
Zuñiga et al. (2020). npj Systems Biology and Applications 6 (1)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Applied Mathematics Computer Science Applications Drug Discovery General Biochemistry, Genetics and Molecular Biology Modelling and Simulation
Abstract
AbstractCandidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing, a lethal vector-borne disease affecting citrus crops worldwide. While comparative genomics has provided preliminary insights into the metabolic capabilities of this uncultured microorganism, a comprehensive functional characterization is currently lacking. Here, we reconstructed and manually curated genome-scale metabolic models for the six CLas strains A4, FL17, gxpsy, Ishi-1, psy62, and YCPsy, in addition to a model of the closest related culturable microorganism, L. crescens BT-1. Predictions about nutrient requirements and changes in growth phenotypes of CLas were confirmed using in vitro hairy root-based assays, while the L. crescens BT-1 model was validated using cultivation assays. Host-dependent metabolic phenotypes were revealed using expression data obtained from CLas-infected citrus trees and from the CLas-harboring psyllid Diaphorina citri Kuwayama. These results identified conserved and unique metabolic traits, as well as strain-specific interactions between CLas and its hosts, laying the foundation for the development of model-driven Huanglongbing management strategies.
Authors
Publication date
2020-08-04
DOI
10.1038/s41540-020-00142-w