Biochemistry


Publications (71)

Metagenomic Discovery of “ <i>Candidatus</i> Parvarchaeales”-Related Lineages Sheds Light on Adaptation and Diversification from Neutral-Thermal to Acidic-Mesothermal Environments

Citation
Rao et al. (2023). mSystems
Names
“Parvarchaeales”
Subjects
Biochemistry Computer Science Applications Ecology, Evolution, Behavior and Systematics Genetics Microbiology Modeling and Simulation Molecular Biology Physiology
Abstract
“ Candidatus Parvarchaeales” microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments.

Comparative Genomic Insights into the Evolution of <i>Halobacteria</i> -Associated “ <i>Candidatus</i> Nanohaloarchaeota”

Citation
Zhao et al. (2022). mSystems 7 (6)
Names
Ca. Nanohaloarchaeota
Subjects
Biochemistry Computer Science Applications Ecology, Evolution, Behavior and Systematics Genetics Microbiology Modeling and Simulation Molecular Biology Physiology
Abstract
The DPANN superphylum is a group of archaea widely distributed in various habitats. They generally have small cells and have a symbiotic lifestyle with other archaea.

Prevalence of Spotted Fever Group Rickettsia and Candidatus Lariskella in Multiple Tick Species from Guizhou Province, China

Citation
Lu et al. (2022). Biomolecules 12 (11)
Names
Ca. Rickettsia jingxinensis Ca. Midichloriaceae Ca. Midichloria mitochondrii Ca. Lariskella guizhouensis Ca. Lariskella
Subjects
Biochemistry Molecular Biology
Abstract
Rickettsiales (Rickettsia spp., Ehrlichia spp., and Anaplasma spp., etc.) are generally recognized as potentially emerging tick-borne pathogens. However, some bacteria and areas in China remain uninvestigated. In this study, we collected 113 ticks from mammals in Guizhou Province, Southwest China, and screened for the Rickettsiales bacteria. Subsequently, two spotted fever group Rickettsia species and one Candidatus Lariskella sp. were detected and characterized. “Candidatus Rickettsia jingxinensis” was detected in Rhipicephalus microplus (1/1), Haemaphysalis flava (1/3, 33.33%), Haemaphysalis kitaokai (1/3), and Ixodes sinensis (4/101, 3.96%), whereas Rickettsia monacensis was positive in H. flava (1/3), H. kitaokai (2/3), and I. sinensis ticks (74/101, 73.27%). At least two variants/sub-genotypes were identified in the R. monacensis isolates, and the strikingly high prevalence of R. monacensis may suggest a risk of human infection. Unexpectedly, a Candidatus Lariskella sp. belonging to the family Candidatus Midichloriaceae was detected from Ixodes ovatus (1/4) and I. sinensis (10/101, 9.90%). The gltA and groEL gene sequences were successfully obtained, and they show the highest (74.63–74.89% and 73.31%) similarities to “Candidatus Midichloria mitochondrii”, respectively. Herein, we name the species “Candidatus Lariskella guizhouensis”. These may be the first recovered gltA and groEL sequences of the genus Candidatus Lariskella.

Identification of housekeeping genes of Candidatus Branchiomonas cysticola associated with epitheliocystis in Atlantic salmon (Salmo salar L.)

Citation
Mjølnerød et al. (2022). Archives of Microbiology 204 (7)
Names
Ca. Branchiomonas cysticola
Subjects
Biochemistry General Medicine Genetics Microbiology Molecular Biology
Abstract
AbstractCandidatus Branchiomonas cysticola is an intracellular, gram-negative Betaproteobacteria causing epitheliocystis in Atlantic Salmon (Salmo salar L.). The bacterium has not been genetically characterized at the intraspecific level despite its high prevalence among salmon suffering from gill disease in Norwegian aquaculture. DNA from gill samples of Atlantic salmon PCR positive for Cand. B. cysticola and displaying pathological signs of gill disease, was, therefore, extracted and subject to next-generation sequencing (mNGS). Partial sequences of four housekeeping (HK) genes (aceE, lepA, rplB, rpoC) were ultimately identified from the sequenced material. Assays for real-time RT-PCR and fluorescence in-situ hybridization, targeting the newly acquired genes, were simultaneously applied with existing assays targeting the previously characterized 16S rRNA gene. Agreement in both expression and specificity between these putative HK genes and the 16S gene was observed in all instances, indicating that the partial sequences of these HK genes originate from Cand. B. cysticola. The knowledge generated from the present study constitutes a major prerequisite for the future design of novel genotyping schemes for this bacterium.

Reevaluation of the Phylogenetic Diversity and Global Distribution of the Genus “ <i>Candidatus</i> Accumulibacter”

Citation
Petriglieri et al. (2022). mSystems 7 (3)
Names
Ca. Accumulibacter
Subjects
Biochemistry Computer Science Applications Ecology, Evolution, Behavior and Systematics Genetics Microbiology Modeling and Simulation Molecular Biology Physiology
Abstract
“ Candidatus Accumulibacter” is the most studied PAO, with a primary role in biological nutrient removal. However, the species-level taxonomy of this lineage is convoluted due to the use of different phylogenetic markers or genome sequencing approaches. Here, we redefined the phylogeny of these organisms, proposing a comprehensive approach which could be used to address the classification of other diverse and uncultivated lineages.

Effect of the Symbiosis with Mycoplasma hominis and Candidatus Mycoplasma Girerdii on Trichomonas vaginalis Metronidazole Susceptibility

Citation
Margarita et al. (2022). Antibiotics 11 (6)
Names
Ca. Mycoplasma girerdii
Subjects
Biochemistry General Pharmacology, Toxicology and Pharmaceutics Infectious Diseases Microbiology Microbiology (medical) Pharmacology (medical)
Abstract
Trichomoniasis, the most common non-viral sexually transmitted infection worldwide, is caused by the protozoon Trichomonas vaginalis. The 5- nitroimidazole drugs, of which metronidazole is the most prescribed, are the only effective drugs to treat trichomoniasis. Resistance against metronidazole is increasingly reported among T. vaginalis isolates. T. vaginalis can establish an endosymbiosis with two Mycoplasma species, Mycoplasma hominis and Candidatus Mycoplasma girerdii, whose presence has been demonstrated to influence several aspects of the protozoan pathobiology. The role of M. hominis in T. vaginalis resistance to metronidazole is controversial, while the influence of Ca. M. girerdii has never been investigated. In this work, we investigate the possible correlation between the presence of Ca. M. girerdii and/or M. hominis and the in vitro drug susceptibility in a large group of T. vaginalis isolated in Italy and in Vietnam. We also evaluated, via RNA-seq analysis, the expression of protozoan genes involved in metronidazole resistance in a set of syngenic T. vaginalis strains, differing only for the presence/absence of the two Mycoplasmas. Our results show that the presence of M. hominis significantly increases the sensitivity to metronidazole in T. vaginalis and affects gene expression. On the contrary, the symbiosis with Candidatus Mycoplasma girerdii seems to have no effect on metronidazole resistance in T. vaginalis.