AbstractRecent outbreaks of ‘Candidatus Phytoplasma solani’ resulted in severe losses in potatoes, vegetable crops and grapevines in certain regions of Austria and constituted a major challenge for seed potato production. Therefore, the effects of various insecticides and insect deterrents on pathogen spread were studied both in laboratory and field experiments from 2018 to 2021. In laboratory transmission experiments, field captured Hyalesthes obsoletus were caged on differently treated Catharanthus roseus for five days. The insecticides lambda-cyhalothrin, deltamethrin, esfenvalerate, acetamiprid and chlorpyriphos showed the most rapid impact on insect survival and fully prevented phytoplasma transmission. The particle film forming products kaolin and diatomaceous earth had some effect. A transfer of the promising laboratory results to potato fields, however, was achieved to a limited extent only. Treatments with pyrethroids and acetamiprid every 8–10 days over the flight period of H. obsoletus roughly halved the number of symptomatic plants and tubers in case of moderately susceptible varieties and moderate infection pressure. In the event of susceptible varieties and high disease pressure, treatment effects were hardy discernible. In practical terms, the experiments indicate that insecticide applications alone are not sufficient to mitigate the disease. Spraying of diatomaceous earth and mineral oil did not affect disease incidence in the field.
Abstract
The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacteria and Xcc, according to inhibition zone analyses. The two genes, driven by a strong promoter from Cauliflower mosaic virus, 35S, were integrated into Carrizo citrange via Agrobacterium-mediated transformation. More than 2 years of greenhouse testing indicated that LasLYS2 provided substantial and long-lasting resistance to HLB, allowing transgenic plants to retain low CaLas titers and no obvious symptoms while also clearing CaLas from infected plants in the long term. LasLYS2 transgenic plants with improved HLB resistance also showed resistance to Xcc, indicating that LasLYS2 had dual resistance to HLB and citrus canker. A microbiome study of transgenic plants revealed that the endolysins repressed Xanthomonadaceae and Rhizobiaceae populations in roots while increasing Burkholderiaceae and Rhodanobacteraceae populations, which might boost the citrus defense response, according to transcriptome analysis. We also found that Lyz domain 2 is the key bactericidal motif of LasLYS1 and LasLYS2. Four endolysins with potential resistance to HLB and citrus canker were found based on the structures of LasLYS1 and LasLYS2. Overall, the work shed light on the mechanisms of resistance of CaLas-derived endolysins, providing insights for designing endolysins to develop broad-spectrum disease resistance in citrus.
Stone fruits are a multibillion-dollar industry for the United States and Canada, one that has repeatedly suffered significant economic losses due to outbreaks of the X-disease phytoplasma (‘ Candidatus Phytoplasma pruni’) over the last century. Orchards and entire production areas have been abandoned, with corresponding losses to growers, fruit packers, and consumers. The most recent outbreak, in the U.S. Pacific Northwest, resulted in an estimated $65 million (USD) loss in revenue between 2015 and 2020 and is only increasing in incidence. Already present across much of the continental United States and Canada, the phytoplasma has a broad host range beyond stone fruit and is transmitted by at least eight leafhopper species, therefore stone fruit production in every state is at significant risk. This recovery plan was produced as part of the National Plant Disease Recovery System and is intended to provide a review of pathogen biology, assess the status of critical recovery components, and identify disease management research, extension, and education needs.
The citrus industry in Florida faces a destructive endemic disease, known as huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus (CLas), a phloem-limited bacterium, and transmitted by the Asian citrus psyllid (ACP). Rootstocks are regarded as critical to keep citrus production commercially viable and help trees cope with the disease. Although most scions are susceptible, some rootstocks are HLB-tolerant and may influence ACP infestation and CLas colonization and therefore the grafted tree tolerance. This study aimed to elucidate the relative influence of rootstock and scion on insect vector infestation and CLas colonization under natural HLB-endemic conditions. Seven commercial rootstock cultivars with different genetic backgrounds were grafted with ‘Valencia’ sweet orange (Citrus sinensis) or were self-grafted (non-‘Valencia’) and planted in an open field where ACP and CLas were abundant. ACP infestation was determined weekly during periods of leaf flushing, and leaves and roots were analyzed every 3 months to determine CLas titers. Trees with ‘Valencia’ scion were more attractive to the psyllids than non-‘Valencia’ scions. This was also associated with a higher number of bacteria and a larger abundance of foliar HLB symptoms. The influence of the rootstock on the psyllid attraction of grafted ‘Valencia’ scion was less evident, and leaf CLas titers were similar regardless of the rootstock. Among the non-‘Valencia’ scions, Carrizo had the lowest and US-942 the highest leaf CLas titers. Root CLas titers also varied among cultivars, and standard sour orange roots harbored more bacteria than some trifoliate orange hybrid rootstocks such as US-942. In some trees, CLas was detected first in the roots 4 months after planting, but root CLas titers remained low throughout the study. In contrast, leaf CLas titers increased over time and were considerably higher than root titers from 7 months until the end of the study, 15 months after planting. Overall, the results of this study demonstrate a greater relative influence of the scion than the rootstock on ACP infestation and CLas colonization during the early stages of infection. This suggests that other cultivar-specific traits, such as the ability to tolerate other stresses and to absorb water and nutrients more efficiently, along with influences on the scion phenology, may play a larger role in the rootstock influence on the grafted tree tolerance during the later stages of HLB progression.
In Europe and the Mediterranean region, ‘Candidatus Liberibacter solanacearum’ (Lso) is associated with emerging diseases of Apiaceae crops, mainly carrot. Emergency measures for import of carrot seed were set, requiring seed to be heat-treated at 50°C or tested as Lso-negative by PCR. The germination response to heat treatment was assessed for 24 carrot cultivar and hybrid seed lots. Ten parsley, five fennel, and two celery seed lots were also analysed. Of these 41 seed lots, 21 were Lso-infected. Water heat treatment significantly decreased germinability compared to dry heat treatment, indicating that dry heat treatment is a cheaper and less detrimental procedure. However, the dry heat treatment significantly decreased seed germination compared to untreated controls in four of 24 seed lots of carrot, four of ten parsley seed lots, three of five fennel seed lots, and one of two celery seed lots. For parsley, the heat treatment reduced germinability to a lesser extent in Lso-infected than Lso-free seed lots. These data show that heat treatment can affect the germination of Apiaceae seeds to varying degrees, depending on species or variety, the type of heat treatment, and the sanitary status of the seeds.