Genetics


Publications (321)

Ultrastructural and molecular characterization of endosymbionts of the reed beetle genusMacroplea(Chrysomelidae, Donaciinae), and proposal of “CandidatusMacropleicola appendiculatae” and “CandidatusMacropleicola muticae”

Citation
Kölsch et al. (2009). Canadian Journal of Microbiology 55 (11)
Names (2)
Ca. Macropleicola muticae Ca. Macropleicola appendiculatae
Subjects
Applied Microbiology and Biotechnology General Medicine Genetics Immunology Microbiology Molecular Biology
Abstract
Intracellular bacterial symbionts are known from various insect groups, particularly from those feeding on unbalanced diets, where the bacteria provide essential nutrients to the host. In the case of reed beetles (Coleoptera: Chrysomelidae, Donaciinae), however, the endosymbionts appear to be associated with specialized “glands” that secrete a material used for the beetles’ unusual water-tight cocoon. These glands were discovered over a century ago, but the bacteria they contain have yet to be characterized and placed in a phylogenetic context. Here, we describe the ultrastructure of two endosymbiotic species (“ Candidatus Macropleicola appendiculatae” and “ Candidatus Macropleicola muticae”) that reside in cells of the Malpighian tubules of the reed beetle species Macroplea appendiculata and Macroplea mutica , respectively. Fluorescent in situ hybridization using oligonucleotides targeting the 16S rRNA gene specific to Macroplea symbionts verified the localization of the symbionts in these organs. Phylogenetic analysis of 16S rRNA placed “Candidatus Macropleicola” in a clade of typically endosymbiotic Enterobacteriaceae (γ-proteobacteria). Finally, we discuss the evidence available for the hypothesis that the beetle larvae use a secretion produced by the bacteria for the formation of an underwater cocoon.

Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique'

Citation
Meyer et al. (2009). BMC Genomics 10 (1)
Names (1)
Ca. Pelagibacter ubique
Subjects
Biotechnology Genetics
Abstract
Abstract Background Metagenomic sequence data are proving to be a vast resource for the discovery of biological components. Yet analysis of this data to identify functional RNAs lags behind efforts to characterize protein diversity. The genome of 'Candidatus Pelagibacter ubique' HTCC 1062 is the closest match for approximately 20% of marine metagenomic sequence reads. It is also small, contains little non-coding DNA, and has strikingly low GC content. Results To aid the discovery of RNA motifs within the marine metagenome we exploited the genomic properties of 'Cand. P. ubique' by targeting our search to long intergenic regions (IGRs) with relatively high GC content. Analysis of known RNAs (rRNA, tRNA, riboswitches etc.) shows that structured RNAs are significantly enriched in such IGRs. To identify additional candidate structured RNAs, we examined other IGRs with similar characteristics from 'Cand. P. ubique' using comparative genomics approaches in conjunction with marine metagenomic data. Employing this strategy, we discovered four candidate structured RNAs including a new riboswitch class as well as three additional likely cis-regulatory elements that precede genes encoding ribosomal proteins S2 and S12, and the cytoplasmic protein component of the signal recognition particle. We also describe four additional potential RNA motifs with few or no examples occurring outside the metagenomic data. Conclusion This work begins the process of identifying functional RNA motifs present in the metagenomic data and illustrates how existing completed genomes may be used to aid in this task.

Characterization of putative membrane protein genes of the ‘Candidatus Phytoplasma asteris’, chrysanthemum yellows isolate

Citation
Galetto et al. (2008). Canadian Journal of Microbiology 54 (5)
Names (1)
Ca. Phytoplasma asteris
Subjects
Applied Microbiology and Biotechnology General Medicine Genetics Immunology Microbiology Molecular Biology
Abstract
To characterize potentially important surface-exposed proteins of the phytoplasma causing chrysanthemum yellows (CY), new primers were designed based on the conserved regions of 3 membrane protein genes of the completely sequenced onion yellows and aster yellows witches’ broom phytoplasmas and were used to amplify CY DNA. The CY genes secY, amp, and artI, encoding the protein translocase subunit SecY, the antigenic membrane protein Amp and the arginine transporter ArtI, respectively, were cloned and completely sequenced. Alignment of CY-specific secY sequences with the corresponding genes of other phytoplasmas confirmed the 16S rDNA-based classification, while amp sequences were highly variable within the ‘Candidatus Phytoplasma asteris’. Five CY partial sequences were cloned into the pRSetC expression vector, and 3 of the encoded protein fragments (Amp 64/651, Amp 64/224, ArtI 131/512) were expressed as fusion antigens for the production of CY-specific polyclonal antibodies (A416 against Amp 64/224; A407 against ArtI 131/512). A416 recognized, in Western blots, the full-length Amp from CY-infected plants (periwinkle, daisy) and insect vectors ( Euscelidius variegatus , Macrosteles quadripunctulatus ). A416 also reacted to European aster yellows, to primula yellows phytoplasmas, to northern Italian strains of ‘Ca. Phytoplasma asteris’ from lettuce and gladiolus, but it did not react to American aster yellows phytoplasma.