Publications
3534

Sort by date names
Browse by authors subjects journals

First Report of ‘Candidatus Phytoplasma asteris’-related Strain (16SrI group) Associated with Small Leaves, Leaf Yellowing, and Shoot Proliferation of Morning Glory (Ipomoea biflora) in Taiwan

Citation
Hung et al. (2024). Plant Disease
Names
Ca. Phytoplasma asteris
Abstract
Ipomoea biflora L., commonly known as morning glory, is an herbaceous vine plant in the Convolvulaceae family and is widespread at low elevations in Taiwan and other East Asian countries. In September 2023, six I. biflora plants exhibiting small leaves, leaf yellowing, and shoot proliferation were observed in a vacant lot in Taiwan Agricultural Research Institute (TARI), Wufeng District, Taichung, Taiwan, representing 100% disease incidence in the area. All the symptomatic morning glory climbed

The Effect of Biotic Stress in Plant Species Induced by ‘Candidatus Phytoplasma solani’—An Artificial Neural Network Approach

Citation
Djalovic et al. (2024). Horticulturae 10 (5)
Names
Ca. Phytoplasma solani
Abstract
Infections with phytoplasma present one of the most significant biotic stresses influencing plant health, growth, and production. The phytoplasma ‘Candidatus Phytoplasma solani’ infects a variety of plant species. This pathogen impacts the physiological and morphological characteristics of plants causing stunting, yellowing, leaf curling, and other symptoms that can lead to significant economic losses. The aim of this study was to determine biochemical changes in peony (Paeonia tenuifolia L.), m

Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus 

Citation
Aksenov et al. (2024).
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Huanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries change in vivo in HLB

Effector enrichment by <scp>Candidatus</scp> Liberibacter promotes <scp>Diaphorina citri</scp> feeding <scp>via</scp> Jasmonic acid pathway suppression

Citation
Liu et al. (2024). Pest Management Science
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
AbstractBACKGROUNDCitrus huanglongbing (HLB) is a devastating disease caused by Candidatus Liberibacter asiaticus (CLas) that affects the citrus industry. In nature, CLas relies primarily on Diaphorina citri Kuwayama as its vector for dissemination. After D. citri ingests CLas‐infected citrus, the pathogen infiltrates the insect's body, where it thrives, reproduces, and exerts regulatory control over the growth and metabolism of D. citri. Previous studies have shown that CLas alters the composit

The ‘Candidatus phytoplasma ziziphi’ effectors SJP1 and SJP2 destabilise the bifunctional regulator ZjTCP7 to modulate floral transition and shoot branching

Citation
Ma et al. (2024). Plant, Cell &amp; Environment
Names
Ca. Phytoplasma ziziphi
Abstract
AbstractPhytoplasmic SAP11 effectors alter host plant architecture and flowering time. However, the exact mechanisms have yet to be elucidated. Two SAP11‐like effectors, SJP1 and SJP2, from ‘Candidatus Phytoplasma ziziphi’ induce shoot branching proliferation. Here, the transcription factor ZjTCP7 was identified as a central target of these two effectors to regulate floral transition and shoot branching. Ectopic expression of ZjTCP7 resulted in enhanced bolting and earlier flowering than did the

Prevalence in Potato of ‘Candidatus Arsenophonus Phytopathogenicus’ and ‘Candidatus Phytoplasma Solani’ and Their Transmission via Adult Pentastiridius leporinus

Citation
Rinklef et al. (2024). Insects 15 (4)
Names
Ca. Phytoplasma solani Ca. Phytoplasma Ca. Arsenophonus phytopathogenicus Arsenophonus
Abstract
The planthopper Pentastiridius leporinus (Hempiptera: Cixiidae) is the main vector of two bacterial pathogens: the γ-proteobacterium ‘Candidatus Arsenophonus phytopathogenicus’ and the stolbur phytoplasma ‘Candidatus Phytoplasma solani’. These pathogens cause the disease syndrome basses richesses (SBR) in sugar beet (Beta vulgaris), which reduces the yields and sugar content. In 2022, potato (Solanum tuberosum) fields were found to be colonized by P. leporinus, and the transmission of Arsenophon