AbstractPhytoplasmas are obligate cell wall-less prokaryotic bacteria that primarily multiply in plant phloem tissue. Jujube witches’ broom (JWB) associated with phytoplasma is a destructive disease of jujube (Ziziphus jujuba Mill.). Here we report the complete ‘Candidatus Phytoplasma ziziphi’ chromosome of strain Hebei-2018, which is a circular genome of 764,108-base pairs with 735 predicted CDS. Notably, extra 19,825 bp (from 621,995 to 641,819 bp) compared to the previously reported one complements the genes involved in glycolysis, such as pdhA, pdhB, pdhC, pdhD, ackA, pduL and LDH. The synonymous codon usage bias (CUB) patterns by using comparative genomics analysis among the 9 phytoplasmas were similar for most codons. The ENc-GC3s analysis among the 9 phytoplasmas showed a greater effect under the selection on the CUBs of phytoplasmas genes than mutation and other factors. The genome exhibited a strongly reduced ability in metabolic synthesis, while the genes encoding transporter systems were well developed. The genes involved in sec-dependent protein translocation system were also identified.The expressions of nine FtsHs encoding membrane associated ATP-dependent Zn proteases and Mn-SodA with redox capacity in the Ca. P. ziziphi was positively correlated with the phytoplasma concentration. Taken together, the genome will not only expand the number of phytoplasma species and provide some new information about Ca. P. ziziphi, but also contribute to exploring its pathogenic mechanism.
Abstract
Background
Salicylic Acid (SA) is a pivotal phytohormone in plant innate immunity enhancement of triggered by various pathogens, such as Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB). WRKY is a plant specific transcription factor (TF) family, which plays crucial roles in plant response to biotic stresses. So far, the evolutionary history, functions, and expression patterns under SA treatment and CLas infection of WRKY family are poorly understood in Citrus, despite the release of the genome of several Citrus species. A comprehensive genomic and expressional analysis is worth to conduct for this family.
Results
Here, a genome-wide identification of WRKY TFs was performed in two Citrus species: Citrus sinensis (HLB-sensitive) and Poncirus trifoliata (HLB-tolerant). In total, 52 CsWRKYs and 51 PtrWRKYs were identified, whose physical and chemical properties, chromosome locations, phylogenetic relationships and structural characteristics were comparatively analyzed. Especially, expression patterns of these WRKY genes before and after SA treatment and CLas infection were compared. Based on this result, seven pairs of orthologous WRKY genes showing opposite expression patterns in two Citrus species were screened out. Moreover, two pairs of orthologous WRKY genes with significant differences in the number or type of stress-responsive cis-elements in the promoter regions were discovered. Subcellular localization and transcriptional activation activity assays revealed that these two pairs of orthologous genes are classic WRKY TFs localize in the nucleus and could function as transcriptional activators.
Conclusion
In this study, we systematically analyzed the genomic characterization of WRKY family in two Citrus species, together with the analyses of expression patterns under SA signaling and CLas infection. Our study laid a foundation for further study on the function of WRKY TFs in HLB response and SA signaling of Citrus.
Abstract
Background
The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen ‘Candidatus Liberibacter solanacearum’ (or Lso). Disease symptom severity is dependent on Lso haplotype: tomato plants infected with Lso haplotype B experience more severe symptoms and higher mortality compared to plants infected with Lso haplotype A. By characterizing the molecular differences in the tomato plant’s responses to Lso haplotypes, the key components of LsoB virulence can be identified and, thus, targeted for disease mitigation strategies.
Results
To characterize the tomato plant genes putatively involved in the differential immune responses to Lso haplotypes A and B, RNA was extracted from tomato ‘Moneymaker’ leaves 3 weeks after psyllid infestation. Gene expression levels were compared between uninfected tomato plants (i.e., controls and plants infested with Lso-free psyllids) and infected plants (i.e., plants infested with psyllids infected with either Lso haplotype A or Lso haplotype B). Furthermore, expression levels were compared between plants infected with Lso haplotype A and plants infected with Lso haplotype B. A whole transcriptome analysis identified 578 differentially expressed genes (DEGs) between uninfected and infected plants as well as 451 DEGs between LsoA- and LsoB-infected plants. These DEGs were primarily associated with plant defense against abiotic and biotic stressors, growth/development, plant primary metabolism, transport and signaling, and transcription/translation. These gene expression changes suggested that tomato plants traded off plant growth and homeostasis for improved defense against pathogens, especially when infected with LsoB. Consistent with these results, tomato plant growth experiments determined that LsoB-infected plants were significantly stunted and had impaired negative geotropism. However, it appeared that the defense responses mounted by tomatoes were insufficient for overcoming the disease symptoms and mortality caused by LsoB infection, while these defenses could compensate for LsoA infection.
Conclusion
The transcriptomic analysis and growth experiments demonstrated that Lso-infected tomato plants underwent gene expression changes related to abiotic and biotic stressors, impaired growth/development, impaired plant primary metabolism, impaired transport and signaling transduction, and impaired transcription/translation. Furthermore, the transcriptomic analysis also showed that LsoB-infected plants, relative to LsoA-infected, experienced more severe stunting, had improved responses to some stressors and impaired responses to others, had poorer transport and signaling transduction, and had impaired carbohydrate synthesis and photosynthesis.
Abstract
Background
Mandarin ‘Shatangju’ is susceptible to Huanglongbing (HLB) and the HLB-infected fruits are small, off-flavor, and stay-green at the maturity period. To understand the relationship between pericarp color and HLB pathogen and the effect mechanism of HLB on fruit pericarp coloration, quantitative analyses of HLB bacterial pathogens and carotenoids and also the integrative analysis of metabolome and transcriptome profiles were performed in the mandarin ‘Shatangju’ variety with four different color fruits, whole green fruits (WGF), top-yellow and base-green fruits (TYBGF), whole light-yellow fruits (WLYF), and whole dark-yellow fruits (WDYF) that were infected with HLB.
Results
the HLB bacterial population followed the order WGF > TYBGF > WLYF > WDYF. And there were significant differences between each group of samples. Regarding the accumulation of chlorophyll and carotenoid, the chlorophyll-a content in WGF was the highest and in WDYF was the lowest. The content of chlorophyll-b in WGF was significantly higher than that in other three pericarps. There were significant differences in the total content of carotenoid between each group. WGF and TYBGF pericarps were low in phytoene, γ-carotene, β-cryptoxanthin and apocarotenal, while other kinds of carotenoids were significantly higher than those in WDYF. And WLYF was only short of apocarotenal. We comprehensively compared the transcriptome and metabolite profiles of abnormal (WGF, TYBGF and WLYF) and normal (WDYF, control) pericarps. In total, 2,880, 2,782 and 1,053 differentially expressed genes (DEGs), including 121, 117 and 43 transcription factors were identified in the three comparisons, respectively. The qRT-PCR confirmed the expression levels of genes selected from transcriptome. Additionally, a total of 77 flavonoids and other phenylpropanoid-derived metabolites were identified in the three comparisons. Most (76.65 %) showed markedly lower abundances in the three comparisons. The phenylpropanoid biosynthesis pathway was the major enrichment pathway in the integrative analysis of metabolome and transcriptome profiles.
Conclusions
Synthesizing the above analytical results, this study indicated that different color pericarps were associated with the reduced levels of some carotenoids and phenylpropanoids derivatives products and the down-regulation of proteins in flavonoids, phenylpropanoids derivatives biosynthesis pathway and the photosynthesis-antenna proteins.
Abstract
Background
Huanglongbing (HLB) is a highly destructive citrus disease which threatens citrus production worldwide and ‘Candidatus Liberibacter asiaticus’ (Las), a non-culturable phloem-limited bacterium, is an associated causal agent of the disease. To better understand the physiological and molecular processes involved in host responses to Las, 2-DE and mass spectrometry analyses, as well as ICP spectroscopy analysis were employed to elucidate the global protein expression profiles and nutrient concentrations in leaves of Las-infected grapefruit plants at pre-symptomatic or symptomatic stages for HLB.
Results
This study identified 123 protein spots out of 191 spots that showed significant changes in the leaves of grapefruit plants in response to Las infection and all identified spots matched to 69 unique proteins/peptides. A down-regulation of 56 proteins including those associated with photosynthesis, protein synthesis, and metabolism was correlated with significant reductions in the concentrations of Ca, Mg, Fe, Zn, Mn, and Cu in leaves of grapefruit plants in response to Las infection, particularly in symptomatic plants. Oxygen-evolving enhancer (OEE) proteins, a PSI 9 kDa protein, and a Btf3-like protein were among a small group of proteins that were down-regulated in both pre-symptomatic and symptomatic plants in response to Las infection. Furthermore, a Las-mediated up-regulation of 13 grapefruit proteins was detected, which included Cu/Zn superoxide dismutase, chitinases, lectin-related proteins, miraculin-like proteins, peroxiredoxins and a CAP 160 protein. Interestingly, a Las-mediated up-regulation of granule-bound starch synthase was correlated with an increase in the K concentrations of pre-symptomatic and symptomatic plants.
Conclusions
This study constitutes the first attempt to characterize the interrelationships between protein expression and nutritional status of Las-infected pre-symptomatic or symptomatic grapefruit plants and sheds light on the physiological and molecular mechanisms associated with HLB disease development.