Publications (2770)

Sort by · date · names

Evaluation of Antibiotic Treatment against “ Candidatus Helicobacter suis” in a Mouse Model

Citation
Hellemans et al. (2005). Antimicrobial Agents and Chemotherapy 49 (11)
Names
Ca. Helicobacter suis
Subjects
Infectious Diseases Pharmacology Pharmacology (medical)
Abstract
ABSTRACT “ Helicobacter heilmannii ” (proposed name) type 1 colonizes the human stomach. It has been shown to be identical to“ Candidatus Helicobacter suis,” a Helicobacter species colonizing the stomachs of >60% of slaughter pigs. This bacterium has not been isolated in vitro until now. Antibiotic susceptibility testing of “ Candidatus Helicobacter suis” has not been carried out so far. For the present study, a mouse model was adopted to evaluate the antibiotic susceptibility of this organism. Mice infected with“ Candidatus Helicobacter suis” were treated with amoxicillin and omeprazole, a therapy which is used to treat H. heilmannii infections in humans. Two different isolates of“ Candidatus Helicobacter suis” were tested. The excretion of bacterial DNA was assessed during treatment, using PCR on fecal samples. At the end of the experiment, 8 days after the cessation of treatment, the presence of infection was evaluated using a urease test and a PCR test on stomach samples. A marked decrease in the excretion of bacterial DNA was observed a few days after the onset of treatment, and the level remained low until the end of the experiment. A difference in susceptibility between the two“ Candidatus Helicobacter suis” isolates was pointed out. The in vivo mouse model infected with“ Candidatus Helicobacter suis” will be useful for further screening of potential therapeutic regimens.

‘Candidatus Protochlamydia amoebophila’, an endosymbiont of Acanthamoeba spp.

Citation
Collingro et al. (2005). International Journal of Systematic and Evolutionary Microbiology 55 (5)
Names
Ca. Protochlamydia amoebophila
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
The obligately intracellular coccoid bacterium UWE25, a symbiont of Acanthamoeba spp., was previously identified as being related to chlamydiae based upon the presence of a chlamydia-like developmental cycle and its 16S rRNA gene sequence. Analysis of its complete genome sequence demonstrated that UWE25 shows many characteristic features of chlamydiae, including dependency on host-derived metabolites, composition of the cell envelope and the ability to thrive as an energy parasite within the cells of its eukaryotic host. Phylogenetic analysis of 44 ribosomal proteins further confirmed the affiliation of UWE25 to the ‘Chlamydiae’. Within this phylum, UWE25 could be assigned to the family Parachlamydiaceae based on comparative analyses of the 16S rRNA, 23S rRNA and endoribonuclease P RNA genes. The distinct dissimilarities from its closest relative, Parachlamydia acanthamoebae Bn9 T (7·1, 9·7 and 28·8 %, respectively), observed in this analysis justify its classification in a new genus. Therefore, the name ‘Candidatus Protochlamydia amoebophila’ is proposed for the designation of the Acanthamoeba sp. symbiont UWE25 (=ATCC PRA-7).

‘Candidatus Liberibacter americanus’, associated with citrus huanglongbing (greening disease) in São Paulo State, Brazil

Citation
Teixeira et al. (2005). International Journal of Systematic and Evolutionary Microbiology 55 (5)
Names
Ca. Liberibacter americanus
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
Symptoms of huanglongbing (HLB) were reported in São Paulo State (SPS), Brazil, in March 2004. In Asia, HLB is caused by ‘Candidatus Liberibacter asiaticus' and in Africa by ‘Candidatus Liberibacter africanus’. Detection of the liberibacters is based on PCR amplification of their 16S rRNA gene with specific primers. Leaves with blotchy mottle symptoms characteristic of HLB were sampled in several farms of SPS and tested for the presence of liberibacters. ‘Ca. L. asiaticus' was detected in a small number of samples but most samples gave negative PCR results. Therefore, a new HLB pathogen was suspected. Evidence for an SPS-HLB bacterium in symptomatic leaves was obtained by PCR amplification with universal primers for prokaryotic 16S rRNA gene sequences. The amplified 16S rRNA gene was cloned and sequenced. Sequence analysis and phylogeny studies showed that the 16S rRNA gene possessed the oligonucleotide signatures and the secondary loop structure characteristic of the α-Proteobacteria, including the liberibacters. The 16S rRNA gene sequence phylogenetic tree showed that the SPS-HLB bacterium clustered within the α-Proteobacteria, the liberibacters being its closest relatives. For these reasons, the SPS-HLB bacterium is considered a member of the genus ‘Ca. Liberibacter’. However, while the 16S rRNA gene sequences of ‘Ca. L. asiaticus' and ‘Ca. L. africanus' had 98·4 % similarity, the 16S rRNA gene sequence of the SPS-HLB liberibacter had only 96·0 % similarity with the 16S rRNA gene sequences of ‘Ca. L. asiaticus' or ‘Ca. L. africanus’. This lower similarity was reflected in the phylogenetic tree, where the SPS-HLB liberibacter did not cluster within the ‘Ca. L asiaticus’/‘Ca. L. africanus group’, but as a separate branch. Within the genus ‘Candidatus Liberibacter’ and for a given species, the 16S/23S intergenic region does not vary greatly. The intergenic regions of three strains of ‘Ca. L. asiaticus’, from India, the People's Republic of China and Japan, were found to have identical or almost identical sequences. In contrast, the intergenic regions of the SPS-HLB liberibacter, ‘Ca. L. asiaticus' and ‘Ca. L. africanus' had quite different sequences, with similarity between 66·0 and 79·5 %. These results confirm that the SPS-HLB liberibacter is a novel species for which the name ‘Candidatus Liberibacter americanus' is proposed. Like the African and the Asian liberibacters, the ‘American’ liberibacter is restricted to the sieve tubes of the citrus host. The liberibacter could also be detected by PCR amplification of the 16S rRNA gene in Diaphorina citri, the psyllid vector of ‘Ca. L. asiaticus’, suggesting that this psyllid is also a vector of ‘Ca. L. americanus' in SPS. ‘Ca. L. americanus' was detected in 216 of 218 symptomatic leaf samples from 47 farms in 35 municipalities, while ‘Ca. L. asiaticus' was detected in only 4 of the 218 samples, indicating that ‘Ca. L. americanus' is the major cause of HLB in SPS.

Phylogenetic positions of ‘Candidatus Phytoplasma asteris' and Spiroplasma kunkelii as inferred from multiple sets of concatenated core housekeeping proteins

Citation
Zhao et al. (2005). International Journal of Systematic and Evolutionary Microbiology 55 (5)
Names
Ca. Phytoplasma asteris
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
Phytopathogenic mollicutes, which include spiroplasmas and phytoplasmas, are cell wall-less bacteria that parasitize plant hosts and insect vectors. Knowledge of the evolution of these agents is important in understanding their biology. The availability of the first complete phytoplasma and several partial spiroplasma and phytoplasma genome sequences made possible an investigation of evolutionary relationships between phytopathogenic mollicutes and other micro-organisms, especially Gram-positive bacteria, using a comparative genomics approach. Genome data from a total of 41 bacterial species were used in the analysis. Sixty-one conserved proteins were selected from each species for the construction of a hypothetical phylogenetic tree. The genes encoding these selected proteins are among a core of genetic elements that constitute a hypothetical minimal genome. The proteins were concatenated into five superproteins according to their functional categories, and phylogenetic trees were reconstructed using distance, parsimony and likelihood methods. Phylogenetic trees based on the five sets of concatenated proteins were congruent in both clade topology and relative branching length. Spiroplasma kunkelii and phytoplasmas clustered together with other mollicutes, forming a monophyletic group. Phytoplasmas diverged from spiroplasmas and mycoplasmas at early stages in the evolution of mollicutes. Branch lengths on the phylogenetic trees were noticeably longer in the Mollicutes clade, suggesting that the genes encoding the five sets of proteins evolved at a greater rate in this clade than in other clades. This observation reinforces the concept that mollicutes have rapidly evolving genomes.

‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin)

Citation
Capuzzo et al. (2005). International Journal of Systematic and Evolutionary Microbiology 55 (4)
Names
Ca. Erwinia dacicola
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
The taxonomic identity of the hereditary prokaryotic symbiont of the olive fly Bactrocera oleae (Diptera: Tephritidae) was investigated. In order to avoid superficial microbial contaminants and loosely associated saprophytic biota, flies were surface-sterilized at the larval stage and reared under aseptic conditions until adult emergence. B. oleae flies originating from different geographical locations and collected at different times of the year were tested. Bacterial isolation was undertaken from the cephalic oesophageal bulb, which is known to be a specific site of accumulation for the hosted microsymbionts in the adult insect. Despite evidence of multiplication cycles taking place within the insect, attempts at cultivation of the isolated bacteria ex situ were not productive at any stage, leading to the choice of unculturable status definition. PCR amplification and nucleotide sequencing of the entire 16S rRNA gene consistently yielded a single sequence that displayed marked similarity with enterobacterial lineages, with closest matches (97 %) to Erwinia persicina and Erwinia rhapontici. The novel taxon differs from common intestinal bacterial species of fruit flies and from instances of culturable bacteria previously described in B. oleae raised without sterility precautions, which we also observed as minority occupants or occasional contaminants. The symbiont's identity is also distinct from Pseudomonas savastanoi. In all observations, the numerically dominant inhabitant of the olive fly oesophageal organ was the same unculturable organism, whose presence at later stages was also regularly observed in the midgut. A novel species is proposed, by virtue of its unique properties, under the designation ‘Candidatus Erwinia dacicola’.

Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm

Citation
Everett et al. (2005). International Journal of Systematic and Evolutionary Microbiology 55 (4)
Names
Ca. Fritschea eriococci Ca. Fritschea bemisiae
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
Bacteria called ‘Fritschea’ are endosymbionts of the plant-feeding whitefly Bemisia tabaci and scale insect Eriococcus spurius. In the gut of B. tabaci, these bacteria live within bacteriocyte cells that are transmitted directly from the parent to oocytes. Whiteflies cause serious economic damage to many agricultural crops; B. tabaci fecundity and host range are less than those of Bemisia argentifolii, possibly due to the presence of this endosymbiont. The B. tabaci endosymbiont has been characterized using electron microscopy and DNA analysis but has not been isolated or propagated outside of insects. The present study compared sequences for 11 endosymbiont genes to genomic data for chlamydial families Parachlamydiaceae, Chlamydiaceae and Simkaniaceae and to 16S rRNA gene signature sequences from 330 chlamydiae. We concluded that it was appropriate to propose ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm as members of the family Simkaniaceae in the Chlamydiales.