Singleton, Caitlin


Publications
4

A comprehensive overview of the Chloroflexota community in wastewater treatment plants worldwide

Citation
Petriglieri et al. (2023). mSystems 8 (6)
Names
“Epilinea brevis” “Epilinea” “Leptofilum” “Epilineaceae” “Epilineales” “Avedoeria danica” “Avedoeria” “Brachythrix odensensis” “Brachythrix” “Defluviilinea gracilis” “Defluviilinea” “Defluviilinea proxima” “Villigracilis vicinus” “Villigracilis adiacens” “Villigracilis propinquus” “Villigracilis” “Villigracilis affinis” “Villigracilis proximus” “Villigracilis saccharophilus” “Villigracilaceae” “Hadersleviella danica” “Hadersleviella” “Trichofilum aggregatum” “Trichofilum” “Promineifilum glycogenicum” “Leptofilum gracile” “Leptofilum proximum” “Leptovillus gracilis” “Leptovillus affinis” “Leptovillus” “Flexicrinis affinis” “Flexicrinis proximus” “Flexicrinis” “Flexifilum breve” “Flexifilum affine” “Flexifilum” “Flexifilaceae” “Amarolinea dominans” “Fredericiella danica” “Fredericiella” “Caldilinea saccharophila” “Ribeiella danica” “Ribeiella” “Kouleothrix ribensis” “Amarobacter glycogenicus” “Amarobacter” “Amarobacillus elongatus” “Amarobacillus”
Abstract
ABSTRACT Filamentous Chloroflexota are abundant in activated sludge wastewater treatment plants (WWTPs) worldwide and are occasionally associated with poor solid-liquid separation or foaming, but most of the abundant lineages remain undescribed. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide, using high-quality metagenome-assembled genomes (MAGs) and 16S rRNA amplicon data from 740 Danish and global WWTPs. Many novel taxa were descri

Re-evaluation of the phylogenetic diversity and global distribution of the genus Candidatus Accumulibacter

Citation
Petriglieri et al. (2021).
Names
“Accumulibacter” “Accumulibacter phosphatis”
Abstract
AbstractCandidatus Accumulibacter was the first microorganism identified as a polyphosphate-accumulating organism (PAO), important for phosphorus removal from wastewater. This genus is diverse, and the current phylogeny and taxonomic framework appears complicated, with the majority of publicly available genomes classified as “Candidatus Accumulibacter phosphatis”, despite notable phylogenetic divergence. The ppk1 marker gene allows for a finer scale differentiation into different “types” and “cl

“Candidatus Dechloromonas phosphoritropha” and “Ca. D. phosphorivorans”, novel polyphosphate accumulating organisms abundant in wastewater treatment systems

Citation
Petriglieri et al. (2021). The ISME Journal 15 (12)
Names
Ca. Dechloromonas phosphoritropha Ca. Dechloromonas phosphorivorans
Abstract
AbstractMembers of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in

“Candidatus Dechloromonas phosphatis” and “Candidatus Dechloromonas phosphovora”, two novel polyphosphate accumulating organisms abundant in wastewater treatment systems

Citation
Petriglieri et al. (2020).
Names
Ca. Dechloromonas phosphatis Ca. Dechloromonas phosphovora
Abstract
AbstractMembers of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate (P) removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish wastewater treatment plants. Two species were abundant, novel, and uncultured, and coul