Pietersen, Gerhard


Publications (15)

Update and Validation of the 16S rDNA qPCR Assay for the Detection of Three ‘Candidatus Liberibacter Species’ Following Current MIQE Guidelines and Workflow

Citation
Osman et al. (2023). PhytoFrontiers™ 3 (1)
Names (2)
Ca. Liberibacter asiaticus Liberibacter
Subjects
General Medicine
Abstract
An updated real-time multiplex quantitative polymerase chain reaction (qPCR) assay was designed and validated for the simultaneous detection of three ‘ Candidatus Liberibacter species’ (CLsp), ‘ Ca. Liberibacter asiaticus’ (CLas), ‘africanus’ (CLaf), and ‘americanus’ (CLam), associated with the huanglongbing disease of citrus. The multiplex assay was designed based on the qPCR assay published in 2006 by Li et al., considering all available CLsp 16S rRNA gene sequences in GenBank and the MIQE guidelines and workflow for qPCR optimization, which became available after 2006. When using the updated multiplex CLsp qPCR assay compared with singleplex qPCR, no significant increase in quantitative cycle (Cq) values was detected. The specificity and sensitivity of the updated qPCR assay was optimal, and measuring the intra- and interassay variations confirmed the reproducibility and repeatability of the assay. The assay was also successfully used with a large number of diverse samples at independent laboratories in four countries, thus demonstrating its transferability, applicability, practicability, and robustness as different qPCR reaction conditions or instruments had a minor effect on Cq values. This updated multiplex CLsp qPCR assay can be used in a variety of citrus surveys, germplasm, or nursery stock programs that require different pathogen detection tools for their successful operation. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Genome-Informed Design of a LAMP Assay for the Specific Detection of the Strain of ‘Candidatus Phytoplasma asteris’ Phytoplasma Occurring in Grapevines in South Africa

Citation
Alič et al. (2022). Plant Disease 106 (11)
Names (2)
Ca. Phytoplasma asteri Ca. Phytoplasma
Subjects
Agronomy and Crop Science Plant Science
Abstract
Grapevine yellows is one of the most damaging phytoplasma-associated diseases worldwide. It is linked to several phytoplasma species, which can vary regionally due to phytoplasma and insect-vector diversity. Specific, rapid, and reliable detection of the grapevine yellows pathogen has an important role in phytoplasma control. The purpose of this study was to develop and validate a specific loop-mediated isothermal amplification (LAMP) assay for detection of a distinct strain of grapevine ‘Candidatus Phytoplasma asteris’ that is present in South Africa, through implementation of a genome-informed test design approach. Several freely available, user-friendly, web-based tools were coupled to design the specific LAMP assays. The criteria for selection of the assays were set for each step of the process, which resulted in four experimentally operative LAMP assays that targeted the ftsH/hflB gene region, specific to the aster yellows phytoplasma strain from South Africa. A real-time PCR was developed, targeting the same genetic region, to provide extensive validation of the LAMP assay. The validated molecular assays are highly specific to the targeted aster yellows phytoplasma strain from South Africa, with good sensitivity and reproducibility. We show a genome-informed molecular test design and an efficient validation approach for molecular tests if reference and sample materials are sparse and hard to obtain. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

A Review of the ‘Candidatus Liberibacter africanus’ Citrus Pathosystem in Africa

Citation
da Graça et al. (2022). Phytopathology® 112 (1)
Names (1)
Ca. Liberibacter africanus
Subjects
Agronomy and Crop Science Plant Science
Abstract
It has been nearly 100 years since citrus growers in two distinct regions in the northern provinces of South Africa noticed unusual symptoms in their citrus trees, causing significant crop losses. They had no idea that these symptoms would later become part of an almost global pandemic of a disease called greening or huanglongbing (HLB). The rapid spread of the disease indicated that it might be caused by a transmissible pathogen, but it took >50 years to identify the causative agent as ‘Candidatus Liberibacter africanus’. Recently, the disease appeared in more African countries, spreading by both infected planting material and Trioza erytreae. To date, five ‘Ca. L. africanus’ subspecies have been identified in various rutaceous species, with ‘Ca. L. africanus subsp. clausenae’ the only subspecies for which a biovar was detected in citrus. Efforts to detect and differentiate HLB-causing Liberibacter species are ongoing, and recent developments are discussed here. This review focuses on aspects of the African form of HLB, including its specific bacterial species and subspecies, its main insect vector, its geographic distribution, and current management strategies.

Genetic diversity of ‘Candidatus Liberibacter africanus’ in South Africa based on microsatellite markers

Citation
Roberts et al. (2021). European Journal of Plant Pathology 159 (2)
Names (1)
Ca. Liberibacter africanus
Subjects
Agronomy and Crop Science Horticulture Plant Science
Abstract
AbstractCitrus Greening disease (CG) in South Africa (SA) is associated with the fastidious bacterium ‘Candidatus Liberibacter africanus’ (Laf). It has been observed that Laf isolates obtained from different geographic localities in SA differed in the rate of transmission during grafting experiments leading to the hypothesis that genetic variation of Laf may exist in this country. To determine this, 167 Laf isolates obtained from Limpopo, North West, Mpumalanga and the Western Cape were subjected to microsatellite analyses, using four polymorphic markers. From UPGMA and STRUCTURE analysis, it was shown that most sources belong to one of two major genetic groups of Laf and these comprise 25 distinct haplotypes. Four samples included within this study did not group with these two major groups, suggesting a potential third and fourth genetic group of Laf being present, which can be validated by further sampling. Results further indicate that Laf populations in SA are formed by geographic locality. The high genetic diversity observed for Laf within this study is consistent with the hypothesis that Laf originated on the African continent, warranting further genetic analysis of Laf populations from Africa. This is the first study to unveil the genetic diversity of Laf.

Distribution of Candidatus Liberibacter species in Eastern Africa, and the First Report of Candidatus Liberibacter asiaticus in Kenya

Citation
Ajene et al. (2020). Scientific Reports 10 (1)
Names (2)
Liberibacter Ca. Liberibacter asiaticus
Subjects
Multidisciplinary
Abstract
AbstractHuanglongbing (HLB) is a serious disease of Citrus sp. worldwide. In Africa and the Mascarene Islands, a similar disease is known as African citrus greening (ACG) and is associated with the bacterium Candidatus Liberibacter africanus (Laf). In recent years, Candidatus Liberibacter asiaticus (Las) associated with the severe HLB has been reported in Ethiopia. Thus, we aimed to identify the Liberibacter species affecting citrus, the associated vectors in Eastern Africa and their ecological distribution. We assessed the presence of generic Liberibacter in symptomatic leaf samples by quantitative PCR. Subsequently, we sequenced the 50 S ribosomal protein L10 (rplJ) gene region in samples positive for Liberibacters and identified the species by comparison with public sequence data using phylogenetic reconstruction and genetic distances. We detected generic Liberibacter in 26%, 21% and 66% of plants tested from Uganda, Ethiopia and Kenya, respectively. The rplJ sequences revealed the most prevalent Liberibacters in Uganda and Ethiopia were LafCl (22%) and Las (17%), respectively. We detected Las in Kenya for the first time from three sites in the coastal region. Finally, we modelled the potential habitat suitability of Las in Eastern Africa using MaxEnt. The projection showed large areas of suitability for the pathogen in the three countries surveyed. Moreover, the potential distribution in Eastern Africa covered important citrus-producing parts of Ethiopia, Kenya, Uganda and Tanzania, and included regions where the disease has not been reported. These findings will guide in the development of an integrated pest management strategy to ACG/HLB management in Africa.

Draft Genome Sequence of a “ Candidatus Phytoplasma asteris”-Related Strain (Aster Yellows, Subgroup 16SrI-B) from South Africa

Citation
Coetzee et al. (2019). Microbiology Resource Announcements 8 (17)
Names (1)
Ca. Phytoplasma asteris
Subjects
Genetics Immunology and Microbiology (miscellaneous) Molecular Biology
Abstract
Here, we report the draft genome sequence of a phytoplasma discovered in grapevine. The genome size is 600,116 nucleotides (nt), with 597 predicted open reading frames.

Resolution of the Identity of ‘Candidatus Liberibacter’ Species From Huanglongbing-Affected Citrus in East Africa

Citation
Roberts et al. (2017). Plant Disease 101 (8)
Names (1)
Liberibacter
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter asiaticus’, the bacterium associated with citrus Huanglongbing (HLB), was reported from Uganda and tentatively from Tanzania, posing a threat to citriculture in Africa. Two surveys of citrus expressing typical HLB symptoms were conducted in Uganda, Kenya, and Tanzania to verify reports of ‘Ca. L. asiaticus’ and to assess the overall threat of HLB to eastern and southern African citrus production. Samples were analyzed for the presence of ‘Candidatus Liberibacter’ species by real-time PCR and partial sequencing of three housekeeping genes, 16S rDNA, rplJ, and omp. ‘Ca. L. africanus’, the bacterium historically associated with HLB symptoms in Africa, was detected in several samples. However, samples positive in real-time PCR for ‘Ca. L. asiaticus’ were shown not to contain ‘Ca. L. asiaticus’ by sequencing. Sequences obtained from these samples were analogous to ‘Ca. L. africanus subsp. clausenae’, identified from an indigenous Rutaceae species in South Africa, and not to ‘Ca. L. asiaticus’. Results indicate a nontarget amplification of the real-time assay and suggest that previous reports of ‘Ca. L. asiaticus’ from Uganda and Tanzania may be mis-identifications of ‘Ca. L. africanus subsp. clausenae’. This subspecies was additionally detected in individual Diaphorina citri and Trioza erytreae specimens recovered from collection sites. This is the first report of ‘Ca. L. africanus subsp. clausenae’ infecting citrus and being associated with HLB symptoms in this host.