The genus ‘Candidatus Phytoplasma’ was proposed to accommodate cell wall-less bacteria that are molecularly and biochemically incompletely characterized, and colonize plant phloem and insect vector tissues. This provisional classification is highly relevant due to its application in epidemiological and ecological studies, mainly aimed at keeping the severe phytoplasma plant diseases under control worldwide. Given the increasing discovery of molecular diversity within the genus ‘Ca. Phytoplasma’, the proposed guidelines were revised and clarified to accommodate those ‘Ca. Phytoplasma’ species strains sharing >98.65 % sequence identity of their full or nearly full 16S rRNA gene sequences, obtained with at least twofold coverage of the sequence, compared with those of the reference strain of such species. Strains sharing <98.65 % sequence identity with the reference strain but >98.65 % with other strain(s) within the same ‘Ca. Phytoplasma’ species should be considered related strains to that ‘Ca. Phytoplasma’ species. The guidelines herein, keep the original published reference strains. However, to improve ‘Ca. Phytoplasma’ species assignment, complementary strains are suggested as an alternative to the reference strains. This will be implemented when only a partial 16S rRNA gene and/or a few other genes have been sequenced, or the strain is no longer available for further molecular characterization. Lists of ‘Ca. Phytoplasma’ species and alternative reference strains described are reported. For new ‘Ca. Phytoplasma’ species that will be assigned with identity ≥98.65 % of their 16S rRNA gene sequences, a threshold of 95 % genome-wide average nucleotide identity is suggested. When the whole genome sequences are unavailable, two among conserved housekeeping genes could be used. There are 49 officially published ‘Candidatus Phytoplasma’ species, including ‘Ca. P. cocostanzaniae’ and ‘Ca. P. palmae’ described in this manuscript.
Grapevine “bois noir”, related to the presence of ‘Candidatus Phytoplasma solani’ (‘Ca. P. solani’), represents a serious threat in several vine-growing areas worldwide. In surveys conducted over two years, mild and/or moderate symptoms and lower pathogen titer were mainly associated with ‘Ca. P. solani’ strains harboring a secY gene sequence variant (secY52), whereas severe symptoms and higher titer were mainly observed in grapevines infected by phytoplasma strains carrying any one of another four variants. A comparison of amino acid sequences of the protein SecY of ‘Ca. P. solani’ strains revealed the presence of conservative and semi-conservative substitutions. The deduced three-dimensional (3D) protein analysis unveiled that one semi-conservative substitution identified in the sequence variant secY52 is responsible for a structural disordered region that probably confers a flexibility for binding to distinct molecular complexes. In fact, the other analyzed variants show an organized structure and the 3D in silico prediction allowed the identification of β-sheets. Thus, differences in symptom severity and pathogen concentration observed in grapevines infected by ‘Ca. P. solani’ strains carrying distinct secY gene sequence variants suggest a possible relationship between SecY protein structure and phytoplasma strain virulence.
Abstract
Phytoplasmas are cell-wall-less plant pathogenic bacteria of the class Mollicutes, which inhabit the phloem sieve tubes of plants and have been associated with several hundred diseases affecting economically important crops. Over the past few decades 'Candidatus Phytoplasma solani', belonging to the 16SrXII-A ribosomal subgroup, has been found to cause a range of plant diseases in different agro-ecosystems in many countries in Europe and the eastern Mediterranean area and a number of others all over the world. It is thought likely that it has always been present, at least in its European range, but has only been noticed in recent years. Diseases caused include bois noir in grapevines, stolbur in tomatoes, potatoes and other wild and cultivated plants, maize redness, lavender decline, and yellowing, reddening, decline, dwarfism, leaf malformation and degeneration diseases of other plants. 'Ca. P. solani' is usually transmitted from plant to plant by the polyphagous insect vector Hyalesthes obsoletus (Cixiidae) which, although it can complete its life cycle on only a small number of plant species, feeds on a much wider range. Recent studies have demonstrated the presence of additional insect vectors of this phytoplasma in Europe, such as Reptalus panzeri in Serbia, possibly R. quinquecostatus in Serbia and France, and Anaceratagallia ribauti in Austria. This scenario highlights the extreme complexity of the ecology of both 'Ca. Phytoplasma solani' and its insect vectors, underlying the difficulty in studying the epidemiology of diseases associated with this pathogen and in developing efficient control strategies. 'Ca. Phytoplasma solani' is also transmitted by parasitic plants and by grafting and vegetative propagation of infected host plants; it can be spread when host plants are transported by people. In the European Union it is listed as a harmful organism necessitating restrictions on the import of plants in the family Solanaceae.
Abstract
Phytoplasmas are wall-less parasitic bacteria living exclusively in plant phloem as consequence of transmission by sap-sucking insect vectors (Lee et al., 2000); they have been associated with several hundred plant diseases. 'Candidatus Phytoplasma phoenicium' (CaPphoe), subgroup 16SrIX-B, is the aetiological agent of almond witches'-broom (AlmWB), a severe disease affecting almond, peach and nectarine trees in Lebanon and Iran. The first epidemics of AlmWB occurred in almond trees in Lebanon in the early 1990s and in Iran in 1995. In Lebanon, the disease rapidly spread from coastal to high mountainous areas, killing almost 150,000 trees over a period of 15 years. CaPphoe was first added to the EPPO Alert List in 2001 and removed from the list in 2006. The more recent rapid spread of CaPphoe in peach and nectarine orchards and in other plant hosts, along with the identification of efficient insect vectors, increased the alarm about the risk it poses for stone fruit production in the Middle East and in all the countries of the Mediterranean basin. Thus it was re-inserted in the EPPO Alert List in 2015.
Abstract
Phytoplasmas are wall-less parasitic bacteria living exclusively in plant phloem as consequence of transmission by sap-sucking insect vectors (Lee et al., 2000); they have been associated with several hundred plant diseases. 'Candidatus Phytoplasma phoenicium' (CaPphoe), subgroup 16SrIX-B, is the aetiological agent of almond witches'-broom (AlmWB), a severe disease affecting almond, peach and nectarine trees in Lebanon and Iran. The first epidemics of AlmWB occurred in almond trees in Lebanon in the early 1990s and in Iran in 1995. In Lebanon, the disease rapidly spread from coastal to high mountainous areas, killing almost 150,000 trees over a period of 15 years. CaPphoe was first added to the EPPO Alert List in 2001 and removed from the list in 2006. The more recent rapid spread of CaPphoe in peach and nectarine orchards and in other plant hosts, along with the identification of efficient insect vectors, increased the alarm about the risk it poses for stone fruit production in the Middle East and in all the countries of the Mediterranean basin. Thus it was re-inserted in the EPPO Alert List in 2015.
Abstract
Phytoplasmas are cell-wall-less plant pathogenic bacteria of the class Mollicutes, which inhabit the phloem sieve tubes of plants and have been associated with several hundred diseases affecting economically important crops. Over the past few decades 'Candidatus Phytoplasma solani', belonging to the 16SrXII-A ribosomal subgroup, has been found to cause a range of plant diseases in different agro-ecosystems in many countries in Europe and the eastern Mediterranean area and a number of others all over the world. It is thought likely that it has always been present, at least in its European range, but has only been noticed in recent years. Diseases caused include bois noir in grapevines, stolbur in tomatoes, potatoes and other wild and cultivated plants, maize redness, lavender decline, and yellowing, reddening, decline, dwarfism, leaf malformation and degeneration diseases of other plants. 'Ca. P. solani' is usually transmitted from plant to plant by the polyphagous insect vector Hyalesthes obsoletus (Cixiidae) which, although it can complete its life cycle on only a small number of plant species, feeds on a much wider range. Recent studies have demonstrated the presence of additional insect vectors of this phytoplasma in Europe, such as Reptalus panzeri in Serbia, possibly R. quinquecostatus in Serbia and France, and Anaceratagallia ribauti in Austria. This scenario highlights the extreme complexity of the ecology of both 'Ca. Phytoplasma solani' and its insect vectors, underlying the difficulty in studying the epidemiology of diseases associated with this pathogen and in developing efficient control strategies. 'Ca. Phytoplasma solani' is also transmitted by parasitic plants and by grafting and vegetative propagation of infected host plants; it can be spread when host plants are transported by people. In the European Union it is listed as a harmful organism necessitating restrictions on the import of plants in the family Solanaceae.
Grapevine Bois noir (BN) is associated with infection by “Candidatus Phytoplasma solani” (CaPsol). In this study, an array of CaPsol strains was identified from 142 symptomatic grapevines in vineyards of northern, central, and southern Italy and North Macedonia. Molecular typing of the CaPsol strains was carried out by analysis of genes encoding 16S rRNA and translation elongation factor EF-Tu, as well as eight other previously uncharacterized genomic fragments. Strains of tuf-type a and b were found to be differentially distributed in the examined geographic regions in correlation with the prevalence of nettle and bindweed. Two sequence variants were identified in each of the four genomic segments harboring hlyC, cbiQ-glyA, trxA-truB-rsuA, and rplS-tyrS-csdB, respectively. Fifteen CaPsol lineages were identified based on distinct combinations of sequence variations within these genetic loci. Each CaPsol lineage exhibited a unique collective restriction fragment length polymorphism (RFLP) pattern and differed from each other in geographic distribution, probably in relation to the diverse ecological complexity of vineyards and their surroundings. This RFLP-based typing method could be a useful tool for investigating the ecology of CaPsol and the epidemiology of its associated diseases. Phylogenetic analyses highlighted that the sequence variants of the gene hlyC, which encodes a hemolysin III-like protein, separated into two clusters consistent with the separation of two distinct lineages on the basis of tufB gene sequences. Alignments of deduced full protein sequences of elongation factor-Tu (tufB gene) and hemolysin III-like protein (hlyC gene) revealed the presence of critical amino acid substitutions distinguishing CaPsol strains of tuf-type a and b. Findings from the present study provide new insights into the genetic diversity and ecology of CaPsol populations in vineyards.
Bois noir (BN), associated with ‘Candidatus Phytoplasma solani’ (CaPsol), is the most widespread disease of the grapevine yellows complex worldwide. In this work, BN epidemiology was investigated in a case study vineyard where an unusual CaPsol strain, previously detected only in other host plants, was found to be prevalent in grapevine. Experimental activities included: symptom observation; sampling of symptomatic vines, Auchenorrhyncha specimens, and weeds; molecular detection and typing of CaPsol strains; statistical analyses for determining possible relationships between CaPsol relative concentration, strain type, and symptom severity. Among insects, Reptalus quinquecostatus was the most abundant and was found to be highly infected by CaPsol, while Hyalesthes obsoletus, the main CaPsol vector, was not caught. Moreover, R. quinquecostatus harbored CaPsol strains carrying uniquely the stamp sequence variant St10, also identified as prevalent in vines and in the majority of weeds, and all the secY variants identified in the vineyard. Statistical analyses revealed that CaPsol strains carrying the St10 variant are not associated with severe symptoms, suggesting their possible moderate virulence. Based on such evidence, a new BN epidemiological pattern related to these CaPsol strains and involving grapevine, R. quinquecostatus, and/or weeds is proposed. Furthermore, the possible presence of other players (vectors and weeds) involved in CaPsol transmission to grapevines was highlighted.