Soil Science

Publications (43)

A Sample-to-Answer Compact Optical System for On-Site Detection of Candidatus Liberibacter Asiaticus

Wu et al. (2021). Transactions of the ASABE 64 (1)
Names (2)
Liberibacter Ca. Liberibacter asiaticus
Agronomy and Crop Science Biomedical Engineering Food Science Forestry Soil Science
HighlightsA portable system based on real-time fluorescence analysis was developed for field detection of Candidatus Liberibacter asiaticus within 40 min from sample to answer.A smartphone-assisted device was designed for easy operation, reliable nucleic acid amplification, and highly sensitive fluorescence detection, with sensitivity comparable to that of a commercial instrument.A novel homemade 3D printed box was used for in-field reagent storage, and it could maintain low temperature (<4°C) for about 8 hours without power supply.This fully integrated system is stable, easy to use, inexpensive, and has great application prospects in resource-limited areas.Abstract. Candidatus Liberibacter asiaticus (Las) is a main causal agent of huanglongbing (HLB), a destructive disease that has greatly reduced citrus yields and quality. Instruments with high sensitivity and portability are urgently required for on-site testing. In this study, a novel sample-to-answer optical system for on-site detection of Las was developed. Three major functions, including DNA extraction, amplification, and detection, are integrated into a portable case. This system mainly consists of (1) a specially designed 3D printed box for on-site reagent storage that can maintain low temperature (below 4°C) for 7.5 h at ambient temperature (35°C); (2) a custom device, called the IF-Device, for DNA amplification and detection of HLB, with an optimized optical structure, a sensitive signal processing circuit, and a precise temperature control algorithm with an accuracy of ±0.1°C; and (3) a battery-based power supply for the whole system. In a typical test using sodium fluorescein as a standard model, the results showed that the sensitivity of this system (1.0 nM) could easily meet the requirements of fluorescence biosensors. The feasibility of this homemade system was evaluated with samples extracted from infected citrus leaves based on the loop-mediated isothermal amplification (LAMP) method, and the limit of detection (LOD) was approximately 1.0 × 10-4 ng µL-1. The whole detection process for eight samples could be simultaneously accomplished within 40 min, and the results could be displayed on a smartphone in real-time. Moreover, the portable case is anti-interference, low cost, and only 2 kg in weight. Considering its sensitivity, stability, and portability, this highly integrated system possesses promising prospects for in-field detection. Keywords: Field detection, Fluorescence biosensor, Huanglongbing, Isothermal amplification, Sample-to-answer.

PCR-based diagnostic methods for ‘Candidatus Liberibacter solanacearum’ – Review

Mirmajlessi et al. (2019). Plant Protection Science 55 (No. 4)
Names (1)
“Liberibacter solanacearum”
Agronomy and Crop Science Soil Science
‘Candidatus Liberibacter solanacearum’ is an economically important pathogen in the Americas, New Zealand and Europe. The primary objective of this review is to systematically investigate the polymerase chain reaction (PCR)-based methods used for its detection in plant samples. Several databases were searched from the inception of the relevant literature up to August 2018. This review identified 53 studies that met all the inclusion criteria. The performance of the different methods was also compared, however due to data heterogeneity and insufficient evidence on the sensitivity of all assays used, a meta-analysis of the data was not possible. Nonetheless, the review indicates that the rtPCR designed to the 16S ribosomal RNA gene can be routinely employed as a fast, cost-effective, and reliable detection technique in diagnostic laboratories.