Psyllid yellows, vein-greening (VG), and zebra chip (ZC) diseases, which are primarily transmitted by potato psyllid (PoP) carrying Candidatus Liberibacter solanacearum (CLso), have caused significant losses in solanaceous crop production worldwide. Pathogens interact with their vectors at the organic and cellular levels, while the potential changes that may occur at the biochemical level are less well reported. In this study, the impact of CLso on the metabolism of PoP and the identification of biomarkers from infected psyllids were examined. Using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis, metabolomic changes in CLso-infected psyllids were compared to uninfected ones. A total of 34 metabolites were identified as potential biomarkers of CLso infection, which were primarily related to amino acid, carbohydrate, and lipid metabolism. The significant increase in glycerophospholipids is thought to be associated with CLso evading the insect vector’s immune defense. Matrix-assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) was used to map the spatial distribution of these biomarkers, revealing that 15-keto-Prostaglandin E2 and alpha-D-Glucose were highly expressed in the abdomen of uninfected psyllids but down-regulated in infected psyllids. It is speculated that this down-regulation may be due to CLso evading surveillance by immune suppression in the PoP midgut. Overall, valuable biochemical information was provided, a theoretical basis for a better understanding of psyllid-pathogen interactions was offered, and the findings may aid in breaking the transmission cycle of these diseases.
“Bois noir” disease associated with ‘Candidatus Phytoplasma solani’ seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, this work, therefore, investigated the phytoplasma–grapevine interaction in red cultivar Sangiovese in a vineyard over four seasonal growth stages (from late spring to late summer), comparing leaves from healthy and infected grapevines (symptomatic and symptomless). We found an accumulation of both conjugate and free salicylic acids (SAs) in the leaves of ‘Ca. P. solani’-positive plants from early stages of infection, when plants are still asymptomatic. A strong accumulation of gentisic acid (GA) associated with symptoms progression was found for the first time. A detailed analysis of phenylpropanoids revealed a significant accumulation of hydroxycinnamic acids, flavonols, flavan 3-ols, and anthocyanin cyanidin 3-O-glucoside, which are extensively studied due to their involvement in the plant response to various pathogens. Metabolomic data corroborated by gene expression analysis indicated that phenylpropanoid biosynthetic and salicylic acid-responsive genes were upregulated in ‘Ca. P. solani-positive plants compared to -negative ones during the observed period.
The beet leafhopper, Circulifer tenellus, is an important pest of agricultural crops in the United States, where it transmits Beet curly top virus, Beet leafhopper-transmitted virescence agent phytoplasma and Spiroplasma citri to numerous crops, affecting yield and quality. Each of these pathogens have been linked to serious disease outbreaks within Washington State in the past century. To mitigate the risk of disease, growers target the beet leafhopper in their insect pest management programs. Knowledge of pathogen prevalence in beet leafhopper populations could help growers make better management decisions, but timely diagnostics is required. Four new assays were developed for the rapid detection of the beet leafhopper-associated pathogens. These include two assays that detect Beet leafhopper transmitted virescence agent (a PCR and a real-time PCR SYBR green assay), a duplex PCR assay that simultaneously detects Beet curly top virus and Spiroplasma citri, and a multiplex real-time PCR assay for the simultaneous detection of all three pathogens. The screening of dilution series generated from plant total nucleic acid extracts with these new assays typically led to detection at levels 10- to 100-fold more sensitive than the conventional PCR assays currently used. These new tools will allow the rapid detection of beet leafhopper-associated pathogens in both plant and insect specimens and will have the potential to be used in diagnostic laboratories seeking to disseminate fast, accurate results to growers for implementation in their insect pest monitoring programs.
Huanglongbing (HLB), referred to as citrus greening disease, is a bacterial disease impacting citrus production worldwide and is fatal to young trees and mature trees of certain varieties. In some areas, the disease is devastating the citrus industry. A successful solution to HLB will be measured in economics: citrus growers need treatments that improve tree health, fruit production, and most importantly, economic yield. The profitability of citrus groves is the ultimate metric that truly matters when searching for solutions to HLB. Scientific approaches used in the laboratory, greenhouse, or field trials are critical to the discovery of those solutions and to estimate the likelihood of success of a treatment aimed at commercialization. Researchers and the citrus industry use a number of proxy evaluations of potential HLB solutions; understanding the strengths and limitations of each assay, as well as how best to compare different assays, is critical for decision-making to advance therapies into field trials and commercialization. This perspective aims to help the reader compare and understand the limitations of different proxy evaluation systems based on the treatment and evaluation under consideration. The researcher must determine the suitability of one or more of these metrics to identify treatments and predict the usefulness of these treatments in having an eventual impact on citrus production and HLB mitigation. As therapies advance to field trials in the next few years, a reevaluation of these metrics will be useful to guide future research efforts on strategies to mitigate HLB and vascular bacterial pathogens in other perennial crops.
Cherry blossoms (Cerasus serrula) are native to the temperate zone around the Himalayas in the northern hemisphere, mainly distributed in the west and southwest of China, including Yunnan, Sichuan and Tibet. Cherry has high ornamental, edible and medicinal value. In August 2022, we observed that Cherry trees exhibited witches' broom and plexus bud in Kunming City, Yunan Province, China. The symptoms consisted of many small branches with little leaves at the top of branches, stipule lobation, and clustered adventitious buds that are tumor-like on the branches that usually cannot sprout normally. As disease intensity increased, the branches dried up from the top to the bottom till the death of the whole plant. We named this disease C. serrula witches’ broom disease (CsWB). We found CsWB in the areas of Panlong, Guandu, Xishan Districts in Kunming, where more than 17% of the plants we surveyed were infected. We collected 60 samples from across the three districts. These included 15 symptomatic and 5 asymptomatic plants per district. The lateral stem tissues were observed under a scanning electron microscope (Hitachi S-3000N). The nearly spherical bodies were found in the phloem cells of symptomatic plants. Total DNA extraction was conducted from 0.1 g tissue using the CTAB method (Porebski et al. 1997), ddH2O was used as the negative control, and Dodonaea viscose plants with witches’ broom symptoms were used as the positive control. The nested PCR was used to amplify the 16S rRNA gene (Lee et al. 1993; Schneider et al. 1993) and PCR amplicon of 1.2 kb were amplified (GenBank accessions: OQ408098; OQ408099; OQ408100). The direct PCR specific to the ribosomal protein (rp) gene yielded amplicons of approximately 1.2 kb with primer pair rp(I)F1A and rp(I)R1A (Lee et a. 2003) (GenBank accessions: OQ410969; OQ410970; OQ410971). The fragment from 33 symptomatic samples was consistent with the positive control, and absent for asymptomatic samples, suggesting an association of phytoplasma with the disease. A BLAST analysis of the 16S rRNA sequences of CsWB phytoplasma showed that it has a 99.76% similarity with Trema laevigata witches' broom phytoplasma (GenBank accession MG755412). The rp sequence shared 99.75% identity with Cinnamomum camphora witches' broom phytoplasma (GenBank accession OP649594). An analysis with iPhyClassifier showed that the virtual RFLP pattern derived from the 16S rDNA sequence shares 99.3% similarity with that of the 'Ca. Phytoplasma asteris' reference strain (GenBank accession: M30790), and the virtual RFLP pattern derived from the fragment is identical (similarity coefficient 1.00) to the reference pattern of 16Sr group I, subgroup B (GenBank accession: AP006628). Thus, CsWB phytoplasma is identified as ‘Ca. Phytoplasma asteris’-related strain belonging to sub-group 16SrI-B. The phylogenetic tree was constructed based on 16S rRNA gene and rp gene sequences by using MEGA version 6.0 (Tamura et al. 2013) with neighbor-joining (NJ) method and bootstrap support was estimated with 1000 replicates. The result indicated that the CsWB phytoplasma formed a subclade in 16SrI-B and rpI-B respectively. In addition, the clean 1-year-old C. serrula were tested positive for the phytoplasma using the nested PCR 30 days after being grafted with naturally infected twigs with CsWB symptoms. To the best of our knowledge, Cherry blossoms is a new host of ‘Ca. Phytoplasma asteris’-related strains in China. The newly emerged disease is a threat to the ornamental value of cherry blossoms and the production of wood quality.
Citrus Huanglongbing (HLB), caused by “Candidatus Liberibacter asiaticus” (CLas), is the most destructive disease threatening global citrus industry. Most commercial cultivars were susceptible to HLB, although some showed tolerant to HLB phenotypically. Identifying tolerant citrus genotypes and understanding the mechanism correlated with tolerance to HLB is essential for breeding citrus variety tolerance/resistance to HLB. In this study, the graft assay with CLas-infected bud were performed in four citrus genotypes, including Citrus reticulata Blanco, C. sinensis, C. limon, and C. maxima. HLB tolerance was observed in C. limon and C. maxima, while C. Blanco and C. sinensis were susceptible to HLB. The time-course transcriptomic analysis revealed a significant variation in differentially expressed genes (DEGs) related to HLB between susceptible and tolerant cultivar group at early and late infection stage. Functional analysis of DEGs indicated that the activation of genes involved in SA-mediated defense response, PTI, cell wall associated immunity, endochitinase, phenylpropanoid and alpha-linolenic/linoleic lipid metabolism played an important in the tolerance of C. limon and C. maxima to HLB at early infection stage. In addition, the overactive plant defense combined with the stronger antibacterial activity (antibacterial secondary and lipid metabolism) and the suppression of pectinesterase were contributed to the long-term tolerance to HLB in C. limon and C. maxima at late infection stage. Particularly, the activation of ROS scavenging genes (catalases and ascorbate peroxidases) could help to reduce HLB symptoms in tolerant cultivars. In contrast, the overexpression of genes involved in oxidative burst and ethylene metabolism, as well as the late inducing of defense related genes could lead to the early HLB symptom development in susceptible cultivars at early infection stage. The weak defense response and antibacterial secondary metabolism, and the induce of pectinesterase were responsible for sensitivity to HLB in C. reticulata Blanco and C. sinensis at late infection stage. This study provided new insights into the tolerance/sensitivity mechanism against HLB and valuable guidance for breeding of HLB-tolerant/resistant cultivars.
Huanglongbing (HLB) is a devastating disease that affects all commercial citrus species worldwide. The disease is associated with bacteria of three species of the genus ‘Candidatus Liberibacter’ transmitted by psyllid vectors. To date, HLB has no cure, so preventing its introduction into HLB-free areas is the best strategy to control its spread. For that, the use of accurate, sensitive, specific, and reliable detection methods is critical for good integrated management of this serious disease. This study presents a new real-time recombinase polymerase amplification (RPA) protocol able to detect the three ‘Ca. Liberibacter’ species associated with HLB in both plant and insect samples, validated according to European and Mediterranean Plant Protection Organization (EPPO) guidelines and tested on 365 samples from nine different geographic origins. This new protocol does not require nucleic acid purification or specialized equipment, making it ideal to be used under field conditions. It is based on specific primers and probe targeting a region of fusA gene, which shows a specificity of 94%–100%, both in silico and in vitro, for the ‘Ca. Liberibacter’ species associated with HLB. The analytical sensitivity of the new protocol is excellent, with a reliable detection limit in the order of 101 copies per microliter in HLB-infected plant and insect material. The repeatability and reproducibility of the new methods showed consistent results. Diagnostic parameters of the new RPA protocol were calculated and compared with the gold standard technique, a quantitative real-time PCR, in both crude extracts of citrus plants and insect vectors. The agreement between the two techniques was almost perfect according to the estimated Cohen’s kappa index, with a diagnostic sensitivity and specificity of 83.89% and 100%, respectively, and a relative accuracy of 91.59%. Moreover, the results are obtained in less than 35 min. All these results indicate the potential of this new RPA protocol to be implemented as a reliable on-site detection kit for HLB due to its simplicity, speed, and portability.