Search results (7)


An Improved Reference Gene for Detection of “Candidatus Liberibacter asiaticus” Associated with Citrus Huanglongbing by qPCR and Digital Droplet PCR Assays

Citation
Keremane et al. (2021). Plants 10 (10)
Names
Ca. Liberibacter asiaticus
Subjects
Ecology Ecology, Evolution, Behavior and Systematics Plant Science
Abstract
Citrus huanglongbing (HLB) disease associated with the ‘Candidatus Liberibacter asiaticus’ (CLas) bacterium has caused significant financial damage to many citrus industries. Large-scale pathogen surveys are routinely conducted in California to detect CLas early in the disease cycle by lab-based qPCR assays. We have developed an improved reference gene for the sensitive detection of CLas from plants in diagnostic duplex qPCR and analytical digital droplet PCR (ddPCR) assays. The mitochondrial cytochrome oxidase gene (COX), widely used as a reference, is not ideal because its high copy number can inhibit amplification of small quantities of target genes. In ddPCRs, oversaturation of droplets complicates data normalization and quantification. The variable copy numbers of COX gene in metabolically active young tissue, greenhouse plants, and citrus relatives suggest the need for a non-variable, nuclear, low copy, universal reference gene for analysis of HLB hosts. The single-copy nuclear gene, malate dehydrogenase (MDH), developed here as a reference gene, is amenable to data normalization, suitable for duplex qPCR and ddPCR assays. The sequence of MDH fragment selected is conserved in most HLB hosts in the taxonomic group Aurantioideae. This study emphasizes the need to develop standard guidelines for reference genes in DNA-based PCR assays.

Exogenous Application of Polycationic Nanobactericide on Tomato Plants Reduces the Candidatus Liberibacter Solanacearum Infection

Citation
García-Sánchez et al. (2021). Plants 10 (10)
Names
Liberibacter “Liberibacter solanacearum”
Subjects
Ecology Ecology, Evolution, Behavior and Systematics Plant Science
Abstract
Candidatus Liberibacter solanacearum (CaLso) is associated with diseases in tomato crops and transmitted by the tomato psyllid Bactericera cockerelli. A polymeric water-dispersible nanobactericide (PNB) was evaluated against CaLso as a different alternative. PNB is a well-defined polycationic diblock copolymer designed to permeate into the vascular system of plants. Its assessment under greenhouse conditions was carried out with tomato plants previously infected with CaLso. Using a concentration as low as 1.0 mg L−1, a small but significant reduction in the bacterial load was observed by real-time qPCR. Thus, to achieve an ecologically friendly dosage and set an optimum treatment protocol, we performed experiments to determine the effective concentration of PNB to reduce ~65% of the initial bacterial load. In a first bioassay, a 40- or 70-fold increase was used to reach that objective. At this concentration level, other bioassays were explored to determine the effect as a function of time. Surprisingly, a real reduction in the symptoms was observed after three weeks, and there was a significant decrease in the bacterial load level (~98%) compared to the untreated control plants. During this period, flowering and formation of tomato fruits were observed in plants treated with PNB.

New Cross-Talks between Pathways Involved in Grapevine Infection with ‘Candidatus Phytoplasma solani’ Revealed by Temporal Network Modelling

Citation
Škrlj et al. (2021). Plants 10 (4)
Names
Ca. Phytoplasma solani
Subjects
Ecology Ecology, Evolution, Behavior and Systematics Plant Science
Abstract
Understanding temporal biological phenomena is a challenging task that can be approached using network analysis. Here, we explored whether network reconstruction can be used to better understand the temporal dynamics of bois noir, which is associated with ‘Candidatus Phytoplasma solani’, and is one of the most widespread phytoplasma diseases of grapevine in Europe. We proposed a methodology that explores the temporal network dynamics at the community level, i.e., densely connected subnetworks. The methodology offers both insights into the functional dynamics via enrichment analysis at the community level, and analyses of the community dissipation, as a measure that accounts for community degradation. We validated this methodology with cases on experimental temporal expression data of uninfected grapevines and grapevines infected with ‘Ca. P. solani’. These data confirm some known gene communities involved in this infection. They also reveal several new gene communities and their potential regulatory networks that have not been linked to ‘Ca. P. solani’ to date. To confirm the capabilities of the proposed method, selected predictions were empirically evaluated.

Oxidative Stress and Antioxidative Activity in Leaves and Roots of Carrot Plants Induced by Candidatus Phytoplasma Solani

Citation
Mitrovic et al. (2021). Plants 10 (2)
Names
Ca. Phytoplasma solani Ca. Phytoplasma
Subjects
Ecology Ecology, Evolution, Behavior and Systematics Plant Science
Abstract
The present study examined the effects of Candidatus Phytoplasma solani infection on antioxidative metabolism in leaves and roots of carrot (Daucus carota L.). Disease symptoms appeared at the end of June in the form of the chlorosis on some of the leaves, which became intensely red one week later, while the previously healthy leaves from the same branch becme chlorotic. A few days later, all leaves from the infected leaf branch were intensely red. Infected plants also had slower growth compared to the healthy ones with fewer leaf branches developed. The roots of infected plants were less developed, seared, or gummy with or without brown-colored root hair. The presence of the pathogen was detected by sequencing the 16S rRNA. National Center for Biotechnology Information (NCBI) BLAST analyses of the obtained sequence revealed 100% identity of tested strain with deposited Ca. Phytoplasma solani strains from various countries and hosts, all belonging to the “stolbur” group (16SrXII-A). Identity of 99.74% was found when the tested Serbian strain (MF503627) was compared with the reference stolbur strain STOL11 (AF248959). The oxidative damage of membranes in carrot cells was accompanied by a decrease in the content of photosynthetic pigments. Furthermore, for the determination of specific scavenging properties of the extracts, in vitro antioxidant assay was performed. In phytoplasma-infected carrot leaves, there was a greater reduction in the level of glutathione content (GSH); however; flavonoids and anthocyanidins seem to be responsible for the accompanied increased antioxidative capacity against hydroxyl radical and hydrogen peroxide.

Effect of Daytime and Tree Canopy Height on Sampling of Cacopsylla melanoneura, a ‘Candidatus Phytoplasma mali’ Vector

Citation
Barthel et al. (2020). Plants 9 (9)
Names
Ca. Phytoplasma mali
Subjects
Ecology Ecology, Evolution, Behavior and Systematics Plant Science
Abstract
The psyllids Cacopsylla melanoneura and Cacopsylla picta reproduce on apple (Malus × domestica) and transmit the bacterium ‘Candidatus Phytoplasma mali’, the causative agent of apple proliferation. Adult psyllids were collected by the beating-tray method from lower and upper parts of the apple tree canopy in the morning and in the afternoon. There was a trend of catching more emigrant adults of C.melanoneura in the morning and in the lower part of the canopy. For C.melanoneura remigrants, no differences were observed. The findings regarding the distribution of adults were reflected by the number of nymphs collected by wash-down sampling. The density of C.picta was too low for a statistical analysis. The vector monitoring and how it is commonly performed, is suitable for estimating densities of C.melanoneura. Nevertheless, above a certain temperature threshold, prediction of C.melanoneura density might be skewed. No evidence was found that other relatively abundant psyllid species in the orchard, viz. Baeopelma colorata, Cacopsylla breviantennata, Cacopsylla brunneipennis, Cacopsylla pruni and Trioza urticae, were involved in ‘Candidatus Phytoplasma mali’ transmission. The results of our study contribute to an advanced understanding of insect vector behavior and thus have a practical impact for an improved field monitoring.

Tomato Metabolic Changes in Response to Tomato-Potato Psyllid (Bactericera cockerelli) and Its Vectored Pathogen Candidatus Liberibacter solanacearum

Citation
H.J. Lee et al. (2020). Plants 9 (9)
Names
“Liberibacter solanacearum”
Subjects
Ecology Ecology, Evolution, Behavior and Systematics Plant Science
Abstract
The bacterial pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) is transmitted by the tomato potato psyllid (TPP), Bactericera cockerelli, to solanaceous crops. In the present study, the changes in metabolic profiles of insect-susceptible (cv CastleMart) and resistant (RIL LA3952) tomato plants in response to TPP vectoring Lso or not, were examined after 48 h post infestation. Non-volatile and volatile metabolites were identified and quantified using headspace solid-phase microextraction equipped with a gas chromatograph-mass spectrometry (HS-SPME/GC-MS) and ultra-high pressure liquid chromatography coupled to electrospray quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS), respectively. Partial least squares-discriminant analysis (PLS-DA) was used to define the major uncorrelated metabolite components assuming the treatments as the correlated predictors. Metabolic changes in various classes of metabolites, including volatiles, hormones, and phenolics, were observed in resistant and susceptible plants in response to the insects carrying the pathogen or not. The results suggest the involvement of differentially regulated and, in some cases, implicates antagonistic metabolites in plant defensive signaling. Upon validation, the identified metabolites could be used as markers to screen and select breeding lines with enhanced resistance to reduce economic losses due to the TPP-Lso vector-pathogen complex in Solanaceous crops.

Mycorrhization Mitigates Disease Caused by “Candidatus Liberibacter solanacearum” in Tomato

Citation
Tiénébo et al. (2019). Plants 8 (11)
Names
“Liberibacter solanacearum”
Subjects
Ecology Ecology, Evolution, Behavior and Systematics Plant Science
Abstract
Disease caused by the bacterial pathogen “Candidatus Liberibacter solanacearum” (Lso) represents a serious threat to solanaceous crop production. Insecticide applications to control the psyllid vector, Bactericera cockerelli Šulc (Hemiptera: Triozidae) has led to the emergence of resistance in psyllids populations. Efforts to select natural resistant cultivars have been marginally successful and have been complicated by the presence of distinct Lso haplotypes (LsoA, LsoB) differing in symptoms severity on potato and tomato. A potentially promising management tool is to boost host resistance to the pathogen and/or the insect vector by promoting mycorrhization. Here we tested the hypothesis that mycorrhizal fungi can mitigate the effect of Lso infection on tomato plants. The presence of mycorrhizal fungi substantially delayed and reduced the incidence of Lso-induced symptoms on tomato as compared to non-mycorrhized plants. However, PCR with specific Lso primers revealed that mycorrhization did not prevent Lso transmission or translocation to newly formed leaves. Mycorrhization significantly reduced oviposition by psyllids harboring LsoA and survival of nymphs from these eggs. However, mycorrhization had no effect on oviposition by psyllids harboring LsoB or the survival of nymphs from parents harboring LsoB. These findings indicate the use of mycorrhizal fungi is a promising strategy for the mitigation of disease caused by both LsoA and LsoB and warrants additional field testing.