Huang, Danyue


Publications
3

Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle

Citation
Li et al. (2023). Nature Communications 14 (1)
Names
“Kuafucaenimonas” “Kuafuhalomonas” “Xihepedomonas” “Xihelimnomonas” “Xihecaenimonas” “Xihemicrobium” “Xihebacterium” “Kuafubacterium” “Xihemicrobium aquatica” “Xihemicrobium phototrophica” “Xihebacterium aquatica” “Xihebacterium glacialis” “Xihebacterium phototrophica” “Xihecaenibacterium phototrophica” “Xihemonas phototrophica” “Xihelimnobacterium” “Xihelimnobacterium phototrophica” “Houyihalomonas” “Xihecaenibacterium” “Xihemonas” “Xihehalomonas” “Kuafubacteriaceae” “Kuafubacteriales” “Xihecaenimonas phototrophica” “Xihelimnomonas phototrophica” “Xihepedomonas phototrophica” “Kuafuhalomonas phototrophica” “Kuafucaenimonas phototrophica” “Kuafubacterium phototrophica” “Kuafubacteria” “Xihemonas sinensis” “Xihehalomonas phototrophica” “Houyihalomonas phototrophica” “Houyibacteriaceae” “Houyibacterium” “Houyibacterium oceanica”
Abstract
AbstractPhotosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction cent

Integrating Stochastic and Deterministic Process in the Biogeography of N2-Fixing Cyanobacterium Candidatus Atelocyanobacterium Thalassa

Citation
Li et al. (2021). Frontiers in Microbiology 12
Names
Ca. Atelocyanobacterium
Abstract
UCYN-A is one of the most widespread and important marine diazotrophs. Its unusual distribution in both cold/warm and coastal/oceanic waters challenges current understanding about what drives the biogeography of diazotrophs. This study assessed the community assembly processes of the nitrogen-fixing cyanobacterium UCYN-A, developing a framework of assembly processes underpinning the microbial biogeography and diversity. High-throughput sequencing and a qPCR approach targeting the nifH gene were