Zeng, Jiwu


Publications (3)

Diversity Analysis and Function Prediction of Bacterial Communities in the Different Colored Pericarp of Citrus reticulata cv. ‘Shatangju’ Due to ‘Candidatus Liberibacter asiaticus’ Infection

Citation
Wang et al. (2023). International Journal of Molecular Sciences 24 (14)
Names (2)
Ca. Liberibacter asiaticus Liberibacter
Subjects
Catalysis Computer Science Applications General Medicine Inorganic Chemistry Molecular Biology Organic Chemistry Physical and Theoretical Chemistry Spectroscopy
Abstract
Huanglongbing (HLB), caused by the Candidatus Liberibacter spp., is the most devastating disease in the citrus industry. HLB significantly affects and alters the microbial community structure or potential function of the microbial community of leaves and roots. However, it is unknown how the microbial community structure of the pericarp with different pigments is affected by Candidatus Liberibacter asiaticus (CLas). This study identified the enriched taxa of the microbial community in the citrus pericarp with normal or abnormal pigment and determine the effects of HLB on the pericarp microbial community using 16S rRNA-seq. The alpha and beta diversity and composition of microbial communities were significantly different between normal and abnormal pigment pericarp tissues of ripe fruits infected by CLas. Firmicutes, Actinobacteriota, Bacteroidota, Acidobacteriota, and Desulfobacterota dominated the pericarp microbiota composition in WDYFs (whole dark yellow fruits) samples. The relative abundance of most genera in WDYFs was higher than 1%, such as Burkholderia, and Pelomonas. However, with the exception of the HLB pathogen, the relative abundance of most genera in the abnormal-colored pericarp samples was less than 1%. CLas decreased the relative abundance of pericarp taxonomic. The predicted function of microbial was more plentiful and functional properties in the WDYF sample, such as translation, ribosomal structure and biogenesis, amino acid transport and metabolism, energy production and conversion, and some other clusters of orthologous groups (COG) except for cell motility. The results of this study offer novel insights into understanding the composition of microbial communities of the CLas-affected citrus pericarps and contribute to the development of biological control strategies for citrus against Huanglongbing.

Integrative analysis of metabolome and transcriptome profiles provides insight into the fruit pericarp pigmentation disorder caused by ‘Candidatus Liberibacter asiaticus’ infection

Citation
Wang et al. (2021). BMC Plant Biology 21 (1)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Plant Science
Abstract
Abstract Background Mandarin ‘Shatangju’ is susceptible to Huanglongbing (HLB) and the HLB-infected fruits are small, off-flavor, and stay-green at the maturity period. To understand the relationship between pericarp color and HLB pathogen and the effect mechanism of HLB on fruit pericarp coloration, quantitative analyses of HLB bacterial pathogens and carotenoids and also the integrative analysis of metabolome and transcriptome profiles were performed in the mandarin ‘Shatangju’ variety with four different color fruits, whole green fruits (WGF), top-yellow and base-green fruits (TYBGF), whole light-yellow fruits (WLYF), and whole dark-yellow fruits (WDYF) that were infected with HLB. Results the HLB bacterial population followed the order WGF > TYBGF > WLYF > WDYF. And there were significant differences between each group of samples. Regarding the accumulation of chlorophyll and carotenoid, the chlorophyll-a content in WGF was the highest and in WDYF was the lowest. The content of chlorophyll-b in WGF was significantly higher than that in other three pericarps. There were significant differences in the total content of carotenoid between each group. WGF and TYBGF pericarps were low in phytoene, γ-carotene, β-cryptoxanthin and apocarotenal, while other kinds of carotenoids were significantly higher than those in WDYF. And WLYF was only short of apocarotenal. We comprehensively compared the transcriptome and metabolite profiles of abnormal (WGF, TYBGF and WLYF) and normal (WDYF, control) pericarps. In total, 2,880, 2,782 and 1,053 differentially expressed genes (DEGs), including 121, 117 and 43 transcription factors were identified in the three comparisons, respectively. The qRT-PCR confirmed the expression levels of genes selected from transcriptome. Additionally, a total of 77 flavonoids and other phenylpropanoid-derived metabolites were identified in the three comparisons. Most (76.65 %) showed markedly lower abundances in the three comparisons. The phenylpropanoid biosynthesis pathway was the major enrichment pathway in the integrative analysis of metabolome and transcriptome profiles. Conclusions Synthesizing the above analytical results, this study indicated that different color pericarps were associated with the reduced levels of some carotenoids and phenylpropanoids derivatives products and the down-regulation of proteins in flavonoids, phenylpropanoids derivatives biosynthesis pathway and the photosynthesis-antenna proteins.