Ancona, Veronica


Publications (5)

Validation of Propidium Monoazide-qPCR for Assessing Treatment Effectiveness against ‘Candidatus Liberibacter asiaticus’ in Citrus

Citation
Yang, Ancona (2022). Agronomy 12 (11)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science
Abstract
Huanglongbing (HLB) is an important citrus disease associated with the phloem-limited, uncultured bacterium ‘Candidatus Liberibacter asiaticus’(CLas). Effective treatments against CLas have to be validated in the field, however, methods for the field assessment of treatment effectiveness are time-consuming, in part because DNA-based assays, including quantitative PCR (qPCR), cannot differentiate between live and dead bacterial DNA. The aim of this study was to develop a method for rapid the evaluation of HLB therapies in field experiments. To this aim, a DNA extraction method from citrus leaf tissues with propidum monoazide (PMA), a dye that binds covalently to dsDNA making it unavailable for amplification in subsequent qPCR reactions, was optimized. The results indicated that the efficacy of PMA-qPCR was highly dependent on the primer set used. Primers targeting the 16S region of CLas showed a clear distinction between qPCR from PMA-treated and non-treated samples, while the RNR and LJ900 primers did not show significant differences between the DNA extraction methods. The PMA-qPCR viability analysis of CLas from citrus cuttings treated with different ampicillin (Amp) concentrations showed that all concentrations reduced CLas titers significantly starting 4 days after the initial treatment, unlike the water treatment, which did not show any change. This method was used for assessing the antibacterial activity of Amp, Streptomycin, Oxytetracycline (OTC), and a water control in field tests. The PMA-qPCR results indicated that Amp and OTC displayed significant antibacterial activity against CLas by 8 days post-injection, which was not detected in the non-PMA qPCR analysis. This method could allow the rapid validation of treatments against CLas in field experiments and facilitate the implementation of effective management strategies against HLB.

An Overview of the Mechanisms Against “Candidatus Liberibacter asiaticus”: Virulence Targets, Citrus Defenses, and Microbiome

Citation
Yang, Ancona (2022). Frontiers in Microbiology 13
Names (1)
Ca. Liberibacter asiaticus
Subjects
Microbiology Microbiology (medical)
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria “Candidatus Liberibacter asiaticus” (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.

Transcriptome Profiling of ‘Candidatus Liberibacter asiaticus’ in Citrus and Psyllids

Citation
De Francesco et al. (2022). Phytopathology® 112 (1)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter asiaticus’ (Las) is an emergent bacterial pathogen that is associated with the devastating citrus huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful, and dual-transcriptome analyses aiming to profile gene expression in both Las and its hosts have a low coverage of the Las genome because of the low abundance of bacterial RNA in total RNA extracts from infected tissues. Therefore, a lack of understanding of the Las transcriptome remains a significant knowledge gap. Here, we used a bacterial cell enrichment procedure and confidently determined the expression profiles of approximately 84% of the Las genes. Genes that exhibited high expression in citrus include transporters, ferritin, outer membrane porins, specific pilins, and genes involved in phage-related functions, cell wall modification, and stress responses. We also found 106 genes to be differentially expressed in citrus versus Asian citrus psyllids. Genes related to transcription or translation and resilience to host defense response were upregulated in citrus, whereas genes involved in energy generation and the flagella system were expressed to higher levels in psyllids. Finally, we determined the relative expression levels of potential Sec-dependent effectors, which are considered as key virulence factors of Las. This work advances our understanding of HLB biology and offers novel insight into the interactions of Las with its plant host and insect vector.

Transcriptome profiling of Candidatus Liberibacter asiaticus in citrus and psyllids

Citation
De Francesco et al. [posted content, 2021]
Names (1)
Ca. Liberibacter asiaticus
Abstract
Candidatus Liberibacter asiaticus (Las) is an emergent bacterial pathogen that is associated with the devastating citrus Huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful and dual-transcriptome analyses aiming to profile gene expression in both Las and its host(s) have a low coverage of the Las genome due to the low abundance of bacterial RNA in total RNA extracts from infected tissues. Therefore, the lack of a Las transcriptome remains as a significant knowledge gap. Here, we used a bacterial cell enrichment procedure and confidently determined the expression profiles of approximately 84% of the Las genes. Genes that exhibited the highest expression levels in citrus include ion transporters, ferritin, outer membrane porins, and genes involved in phage-related functions, pilus formation, cell wall modification, and stress responses. One hundred and six genes were found to be differentially expressed in citrus vs psyllids. Genes related to transcription/translation and resilience to host defense response were upregulated in citrus; whereas genes involved in energy generation and the flagella system were expressed to higher levels in psyllids. We also determined the relative expression levels of potential Sec-dependent effectors, which are considered as key virulence factors of Las. This work advances our understanding of HLB biology and offers novel insight into the interactions of Las with its plant host and insect vector.

Metagenomic Analysis Reveals the Mechanism for the Observed Increase in Antibacterial Activity of Penicillin against Uncultured Bacteria Candidatus Liberibacter asiaticus Relative to Oxytetracycline in Planta

Citation
Yang et al. (2020). Antibiotics 9 (12)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Biochemistry General Pharmacology, Toxicology and Pharmaceutics Infectious Diseases Microbiology Microbiology (medical) Pharmacology (medical)
Abstract
Citrus huanglongbing (HLB) is a devastating disease for the citrus industry. The previous studies demonstrated that oxytetracycline and penicillin are effective antibiotics against Candidatus Liberibacter asiaticus (CLas). However, since CLas is uncultured, the mechanisms of action of antibiotics against CLas are still unclear. It was recently reported that the endophytic microbial communities are associated with the progression of citrus HLB after oxytetracycline and penicillin treatment. Therefore, we hypothesize that penicillin has greater antibacterial activity against CLas than oxytetracycline, which may be associated with the alteration of the structure and function of endophytic microbial communities in HLB-affected citrus in response to these antibiotics. To test this hypothesis, the microbiome of HLB-affected citrus leaves treated with these two antibiotics was analyzed using a metagenomic method. Our results indicate that the microbial structure and function in HLB-affected citrus were altered by these two antibiotics. The relative abundance of beneficial bacterial species, including Streptomyces avermitilis and Bradyrhizobium, was higher in penicillin-treated plants compared to those treated with oxytetracycline, and the relative abundance of the bacterial species (such as Propionibacterium acnes and Synechocystis sp PCC 6803) associated with CLas survival was lower for penicillin-treated plants compared to oxytetracycline-treated plants. These results indicate that penicillin has greater antibacterial activity against CLas. Based on the metagenomic analysis, this study elucidated the mechanism for the observed increase in antibacterial activity of penicillin against CLas. The data presented here are not only invaluable for developing eco-friendly and effective biocontrol strategies to combat citrus HLB, but also provide a method for revealing mechanism of antimicrobial against uncultured bacteria in host.