Yang, Shaocong


Publications (3)

Defeating Huanglongbing Pathogen Candidatus Liberibacter asiaticus With Indigenous Citrus Endophyte Bacillus subtilis L1-21

Citation
Munir et al. (2022). Frontiers in Plant Science 12
Names (1)
Ca. Liberibacter asiaticus
Subjects
Plant Science
Abstract
Huanglongbing (HLB) has turned into a devastating botanical pandemic of citrus crops, caused by Candidatus Liberibacter asiaticus (CLas). However, until now the disease has remained incurable with very limited control strategies available. Restoration of the affected microbiomes in the diseased host through the introduction of an indigenous endophyte Bacillus subtilis L1-21 isolated from healthy citrus may provide an innovative approach for disease management. A novel half-leaf method was developed in vitro to test the efficacy of the endophyte L1-21 against CLas. Application of B. subtilis L1-21 at 104 colony forming unit (cfu ml−1) resulted in a 1,000-fold reduction in the CLas copies per gram of leaf midrib (107 to 104) in 4 days. In HLB-affected citrus orchards over a period of 2 years, the CLas incidence was reduced to < 3%, and CLas copies declined from 109 to 104 g−1 of diseased leaf midribs in the endophyte L1-21 treated trees. Reduction in disease incidence may corroborate a direct or an indirect biocontrol effect of the endophytes as red fluorescent protein-labeled B. subtilis L1-21 colonized and shared niche (phloem) with CLas. This is the first large-scale study for establishing a sustainable HLB control strategy through citrus endophytic microbiome restructuring using an indigenous endophyte.

Restructuring citrus endophytic diversity through potential indigenous endophytes could eliminate huanglongbing pathogen Candidatus Liberibacter asiaticus

Citation
Munir et al. [posted content, 2020]
Names (1)
Ca. Liberibacter asiaticus
Abstract
Abstract Background Huanglongbing (HLB) is a major botanical pandemic of citrus crops caused by Candidatus Liberibacter asiaticus (Clas). It is important to understand the different mechanisms involved in interaction of pathogen with plants to develop novel management strategy against HLB. However, until now there has been no control strategy to manage this disease in vitro and on large scale in citrus grove. We found that, indigenous endophyte Bacillus subtilis L1-21, a patented strain isolated from healthy citrus tree, may have the potential to reduce the impact of pathogen through restructuring of core endophytes. Results A novel half-leaf method was developed to test the efficacy of B. subtilis L1-21 against Clas. Concentration of B. subtilis L1-21 at 104 cfu ml− 1 resulted in a 1000-fold reduction in Clas copy densities per gram of leaf midrib (107 to 104) by 4 d after treatment. With endophytes, where HLB incidence was reduced to < 3% and Clas copy density was reduced from 109 to 104 pathogen g− 1 of diseased leaf midrib. We found that 16 of 93 tree samples became Clas-free and functional pathways and pathogen resistance genes were regulated in diseased citrus trees after treatment. Conclusions This is the first large-scale study using an indigenous endophyte and shows its potential utility in sustainable disease management through strengthening the citrus microbiome.