Li, Weimin


Publications (6)

Function and molecular mechanism analysis of CaLasSDE460 effector involved in the pathogenesis of “Candidatus Liberibacter asiaticus” in citrus

Citation
Wang et al. (2023). Molecular Horticulture 3 (1)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Earth-Surface Processes
Abstract
AbstractCitrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the temperature increased from 25 °C to 32 °C, CaLas growth and symptom development in transgenic plants were slower than those in WT controls. RNA-seq analysis of transgenic plants showed that CaLasSDE460 affected multiple biological processes. At 25 °C, transcription activities of the “Protein processing in endoplasmic reticulum” and “Cyanoamino acid metabolism” pathways increased while transcription activities of many pathways decreased at 32 °C. 124 and 53 genes, separately annotated to plant-pathogen interaction and MAPK signaling pathways, showed decreased expression at 32 °C, compared with these (38 for plant-pathogen interaction and 17 for MAPK signaling) at 25 °C. Several important genes (MAPKKK14, HSP70b, NCED3 and WRKY33), remarkably affected by CaLasSDE460, were identified. Totally, our data suggested that CaLasSDE460 participated in the pathogenesis of CaLas through interfering transcription activities of citrus defense response and this interfering was temperature-dependent. Graphical Abstract

An effector of ‘Candidatus Liberibacter asiaticus’ manipulates autophagy to promote bacterial infection

Citation
Shi et al. (2023). Journal of Experimental Botany
Names (1)
Ca. Liberibacter asiaticus
Subjects
Physiology Plant Science
Abstract
Abstract Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. ‘Wanjincheng’ orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.

Candidatus Phytoplasma ziziphi encodes non-classically secreted proteins that suppress hypersensitive cell death response in Nicotiana benthamiana

Citation
Gao et al. (2023). Phytopathology Research 5 (1)
Names (1)
Ca. Phytoplasma ziziphi
Subjects
Biochemistry, Genetics and Molecular Biology (miscellaneous) Genetics Physiology Plant Science
Abstract
AbstractIncreasing evidence is proving the biological significance of the phytoplasma-secreted proteins. However, besides a few Sec-dependent secretory proteins, no other phytoplasma-secreted proteins have been reported yet. Candidatus Phytoplasma ziziphi is a phytoplasma that causes witches’-broom, a devastating jujube disease prevalent in east Asia. In this study, using the SecretomeP server coupled with an Escherichia coli-based alkaline phosphatase assay, we identified 25 non-classically secreted proteins (ncSecPs) from Ca. P. ziziphi, a novel type of secreted protein associated with phytoplasmas. Among them, six were characterized as hypersensitive cell death response (HR) suppressors that significantly attenuated both Bax- and INF1-triggered HR and H2O2 accumulation in Nicotiana benthamiana, indicating a so-far unknown role of the phytoplasma-secreted proteins. Further, we demonstrated that despite the diverse subcellular localizations in the N. benthamiana cells, the six HR-suppressing ncSecPs enhanced the gene expression of several known cell death inhibitors, including pathogenesis-related proteins (NbPR-1, NbPR-2, and NbPR-5) and Bax inhibitor-1 (NbBI-1 and NbBI-2). Together, our data indicated that Ca. P. ziziphi has evolved an arsenal of ncSecPs that jointly circumvent HR by activating the plant cell death inhibitors, thus providing new insight into understanding the pathogenesis of phytoplasmas.

“ Candidatus Liberibacter asiaticus” Secretes Nonclassically Secreted Proteins That Suppress Host Hypersensitive Cell Death and Induce Expression of Plant Pathogenesis-Related Proteins

Citation
Du et al. (2021). Applied and Environmental Microbiology 87 (8)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Applied Microbiology and Biotechnology Biotechnology Ecology Food Science
Abstract
In this study, we present a combined computational and experimental methodology that allows a rapid and efficient identification of the ncSecPs from bacteria, in particular the unculturable bacteria like CLas. Meanwhile, the study determined that a number of CLas ncSecPs suppressed HR-based cell death, and thus indicated a novel role for the bacterial ncSecPs in extracellular milieu.