Belcari, Antonio


Publications (5)

Horizontal transfer and finalization of a reliable detection method for the olive fruit fly endosymbiont, Candidatus Erwinia dacicola

Citation
Bigiotti et al. (2019). BMC Biotechnology 19 (S2)
Names
Ca. Erwinia dacicola
Subjects
Biotechnology
Abstract
Abstract Background The olive fly, Bactrocera oleae, is the most important insect pest in olive production, causing economic damage to olive crops worldwide. In addition to extensive research on B. oleae control methods, scientists have devoted much effort in the last century to understanding olive fly endosymbiosis with a bacterium eventually identified as Candidatus Erwinia dacicola. This bacterium plays a relevant role in olive fly fitness. It is vertically transmitted, and it benefits both larvae and adults in wild populations; however, the endosymbiont is not present in lab colonies, probably due to the antibiotics and preservatives required for the preparation of artificial diets. Endosymbiont transfer from wild B. oleae populations to laboratory-reared ones allows olive fly mass-rearing, thus producing more competitive flies for future Sterile Insect Technique (SIT) applications. Results We tested the hypothesis that Ca. E. dacicola might be transmitted from wild, naturally symbiotic adults to laboratory-reared flies. Several trials have been performed with different contamination sources of Ca. E. dacicola, such as ripe olives and gelled water contaminated by wild flies, wax domes containing eggs laid by wild females, cages dirtied by faeces dropped by wild flies and matings between lab and wild adults. PCR-DGGE, performed with the primer set 63F-GC/518R, demonstrated that the transfer of the endosymbiont from wild flies to lab-reared ones occurred only in the case of cohabitation. Conclusions Cohabitation of symbiotic wild flies and non-symbiotic lab flies allows the transfer of Ca. E. dacicola through adults. Moreover, PCR-DGGE performed with the primer set 63F-GC/518R was shown to be a consistent method for screening Ca. E. dacicola, also showing the potential to distinguish between the two haplotypes (htA and htB). This study represents the first successful attempt at horizontal transfer of Ca. E. dacicola and the first step in acquiring a better understanding of the endosymbiont physiology and its relationship with the olive fly. Our research also represents a starting point for the development of a laboratory symbiotic olive fly colony, improving perspectives for future applications of the Sterile Insect Technique.

Olive fruit fly rearing procedures affect the vertical transmission of the bacterial symbiont Candidatus Erwinia dacicola

Citation
Sacchetti et al. (2019). BMC Biotechnology 19 (S2)
Names
Ca. Erwinia dacicola
Subjects
Biotechnology
Abstract
Abstract Background The symbiosis between the olive fruit fly, Bactrocera oleae, and Candidatus Erwinia dacicola has been demonstrated as essential for the fly’s larval development and adult physiology. The mass rearing of the olive fruit fly has been hindered by several issues, including problems which could be related to the lack of the symbiont, presumably due to preservatives and antibiotics currently used during rearing under laboratory conditions. To better understand the mechanisms underlying symbiont removal or loss during the rearing of lab colonies of the olive fruit fly, we performed experiments that focused on bacterial transfer from wild female flies to their eggs. In this research, eggs laid by wild females were treated with propionic acid solution, which is often used as an antifungal agent, a mixture of sodium hypochlorite and Triton X, or water (as a control). The presence of the bacterial symbiont on eggs was evaluated by real-time PCR and scanning electron microscopy. Results DGGE analysis showed a clear band with the same migration behavior present in all DGGE profiles but with a decreasing intensity. Molecular analyses performed by real-time PCR showed a significant reduction in Ca. E. dacicola abundance in eggs treated with propionic acid solution or a mixture of sodium hypochlorite and Triton X compared to those treated with water. In addition, the removal of bacteria from the surfaces of treated eggs was highlighted by scanning electron microscopy. Conclusions The results clearly indicate how the first phases of the colony-establishment process are important in maintaining the symbiont load in laboratory populations and suggest that the use of products with antimicrobial activity should be avoided. The results also suggest that alternative rearing procedures for the olive fruit fly should be investigated.

Olive fruit fly rearing procedures affect the vertical transmission of the bacterial symbiontCandidatusErwinia dacicola

Citation
Sacchetti et al. [posted content, 2018]
Names
Ca. Erwinia dacicola
Abstract
AbstractBackground: The symbiosis between the olive fruit fly,Bactrocera oleae, andCandidatusErwinia dacicola has been demonstrated as essential for the fly’s larval development and adult physiology. The mass rearing of the olive fruit fly has been hindered by several issues, including problems which could be related to the lack of the symbiont, presumably due to preservatives and antibiotics currently used in the laboratory. To better understand the mechanisms underlying symbiont removal or loss during the rearing of lab colonies of the olive fruit fly, we performed experiments that focused on bacterial transfer from wild female flies to their eggs. In this research, eggs laid by wild females were treated with propionic acid solution, which is often used as an antifungal agent, a mixture of sodium hypochlorite and Triton X, or water (as a control). The presence of the bacterial symbiont on eggs was evaluated by real-time PCR and scanning electron microscopy.Results: DGGE analysis showed a clear band with the same migration behavior present in all DGGE profiles but with a decreasing intensity. Molecular analyses performed by real-time PCR showed a significant reduction inCa. E. dacicola abundance in eggs treated with propionic acid solution or a mixture of sodium hypochlorite and Triton X compared to those treated with water. In addition, the removal of bacteria from the surfaces of treated eggs was highlighted by scanning electron microscopy.Conclusions: The results clearly indicate how the first phases of the colony-establishment process are important in maintaining the symbiont load in laboratory populations and suggest that the use of products with antimicrobial activity should be avoided. The results also suggest that alternative rearing procedures for the olive fruit fly should be investigated.

Horizontal transfer and finalization of a reliable detection method for the olive fruit fly endosymbiont,CandidatusErwinia dacicolax

Citation
Bigiotti et al. [posted content, 2018]
Names
Ca. Erwinia dacicola
Abstract
AbstractBackgroundThe olive fly,Bactrocera oleae, is the most important insect pest in olive production, causing economic damage to olive crops worldwide. In addition to extensive research onB. oleaecontrol methods, scientists have devoted much effort in the last century to understanding olive fly endosymbiosis with a bacterium eventually identified asCandidatusErwinia dacicola. This bacterium plays a relevant role in olive fly fitness. It is vertically transmitted, and it benefits both larvae and adults in wild populations; however, the endosymbiont is not present in lab colonies, probably due to the antibiotics and preservatives required for the preparation of artificial diets. Endosymbiont transfer from wildB. oleaepopulations to laboratory-reared ones allows olive fly mass-rearing, thus producing more competitive flies for future Sterile Insect Technique (SIT) applications.ResultsWe tested the hypothesis thatCa.E. dacicola might be transmitted from wild, naturally symbiotic adults to laboratory-reared flies. Several trials have been performed with different contamination sources ofCa.E. dacicola, such as ripe olives and gelled water contaminated by wild flies, wax domes containing eggs laid by wild females, cages dirtied by faeces dropped by wild flies and matings between lab and wild adults. PCR-DGGE, performed with the primer set 63F-GC/518R, demonstrated that the transfer of the endosymbiont from wild flies to lab-reared ones occurred only in the case of cohabitation.ConclusionsCohabitation of symbiotic wild flies and non-symbiotic lab flies allows the transfer ofCa.E. dacicola through adults. Moreover, PCR-DGGE performed with the primer set 63F-GC/518R was shown to be a consistent method for screeningCa.E. dacicola, also showing the potential to distinguish between the two haplotypes (htA and htB). This study represents the first successful attempt at horizontal transfer ofCa.E. dacicola and the first step in acquiring a better understanding of the endosymbiont physiology and its relationship with the olive fly. Our research also represents a starting point for the development of a laboratory symbiotic olive fly colony, improving perspectives for future applications of the Sterile Insect Technique.