The oxidative (H2O2) burst is a seminal feature of the basal plant defense response to attempted pathogen invasions. In ‘Candidatus Liberibacter asiaticus’ UF506, expression of the SC2 prophage-encoded secreted peroxidase (F489_gp15) increases bacterial fitness and delays symptom progression in citrus. Two chromosomal 1-Cys peroxiredoxin genes, CLIBASIA_RS00940 (Lasprx5) and CLIBASIA_RS00445 (Lasbcp), are conserved among all sequenced ‘Ca. L. asiaticus’ strains, including those lacking prophages. Both LasBCP and LasdPrx5 have only a single conserved peroxidatic Cys (CP/SH) and lack the resolving Cys (CR/SH). Lasprx5 appeared to be a housekeeping gene with similar moderate transcript abundance in both ‘Ca. L. asiaticus’–infected psyllids and citrus. By contrast, Lasbcp was expressed only in planta, similar to the expression of the SC2 peroxidase. Since ‘Ca. L. asiaticus’ is uncultured, Lasbcp and Lasprx5 were functionally validated in a cultured surrogate species, Liberibacter crescens, and both genes significantly increased oxidative stress tolerance and cell viability in culture. LasBCP was nonclassically secreted and, in L. crescens, conferred 214-fold more resistance to tert-butyl hydroperoxide (tBOOH) than wild type. Transient overexpression of Lasbcp in tobacco suppressed H2O2-mediated transcriptional activation of RbohB, the key gatekeeper of the systemic plant defense signaling cascade. Lasbcp expression did not interfere with the perception of ‘Ca. L. asiaticus’ flagellin (flg22Las) but interrupted the downstream activation of RbohB and stereotypical deposition of callose in tobacco. Critically, LasBCP also protected against tBOOH-induced peroxidative degradation of lipid membranes in planta, preventing subsequent accumulation of antimicrobial oxylipins that can also trigger the localized hypersensitive cell death response.
The 22–amino acid (flg22) pathogen-associated molecular pattern from the flagellin of Xanthomonas citri subsp. citri has been shown to induce defense responses correlated with citrus canker resistance. Here, flg22 of ‘Candidatus Liberibacter asiaticus’, the putative causal agent of Huanglongbing (HLB), elicited differential defense responses that were weaker than those from Xcc-flg22, between those of the HLB-tolerant mandarin cultivar Sun Chu Sha and susceptible grapefruit cultivar Duncan. Transcriptomics was used to compare the effect of CLas-flg22 and Xcc-flg22 between the citrus genotypes and identified 86 genes induced only by CLas-flg22 in the tolerant mandarin. Expression of 16 selected genes was validated, by reverse transcription-quantitative polymerase chain reaction, and was evaluated in citrus during ‘Ca. L. asiaticus’ infection. Differential expression of a number of genes occurred between tolerant and susceptible citrus infected with ‘Ca. L. asiaticus’, suggesting their involvement in HLB tolerance. In addition, several genes were similarly regulated by CLas-flg22 and ‘Ca. L. asiaticus’ treatments, while others were oppositely regulated in the tolerant mandarin, suggesting similarity and interplay between CLas-flg22 and ‘Ca. L. asiaticus’–triggered defenses. Genes identified are valuable in furthering the study of HLB tolerance mechanisms and, potentially, for screening for HLB-tolerant citrus using CLas-flg22 as a pathogen proxy.
ABSTRACT
“
Candidatus
Liberibacter asiaticus” is an uncultured alphaproteobacterium that systemically colonizes its insect host both inter- and intracellularly and also causes a severe, crop-destroying disease of citrus called huanglongbing, or citrus “greening.”
In planta
, “
Ca
. Liberibacter asiaticus” is also systemic but phloem limited. “
Ca
. Liberibacter asiaticus” strain UF506 carries two predicted prophages, SC1 and SC2. Bacteriophage particles have been observed in experimentally “
Ca
. Liberibacter asiaticus”-infected periwinkle but not in any other host. Comparative gene expression analysis of predicted SC1 late genes showed a much higher level of late gene expression, including holin transcripts (SC1_gp110), in “
Ca
. Liberibacter asiaticus”-infected periwinkle relative to “
Ca
. Liberibacter asiaticus”-infected citrus. To functionally characterize predicted holin and endolysin activity, SC1_gp110 and two predicted endolysins, one within SC1 (SC1_gp035) and another well outside the predicted prophage region (CLIBASIA_04790), were cloned and expressed in
Escherichia coli
. Both SC1 genes inhibited bacterial growth consistent with holin and endolysin function. The holin (SC1_gp110) promoter region was fused with a
uidA
reporter on pUFR071, a wide bacterial host range (repW) replicon, and used to transform
Liberibacter crescens
strain BT-1 by electroporation. BT-1 is the only liberibacter strain cultured to date and was used as a proxy for “
Ca
. Liberibacter asiaticus.” pUFR071 was >95% stable without selection in BT-1 for over 20 generations. The reporter construct exhibited strong constitutive glucuronidase (GUS) activity in culture-grown BT-1 cells. However, GUS reporter activity in BT-1 was suppressed in a dose-dependent manner by crude aqueous extracts from psyllids. Taken together with plant expression data, these observations indicate that “
Ca
. Liberibacter asiaticus” prophage activation may limit “
Ca
. Liberibacter asiaticus” host range and culturability.