Amann, Rudolf


Publications (10)

Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes

Citation
Dede et al. (2022). The ISME Journal 16 (6)
Names (3)
Ca. Thioglobus vulcanius Ca. Thioglobus vadi Ca. Thioglobus plumae
Subjects
Ecology, Evolution, Behavior and Systematics Microbiology
Abstract
AbstractHydrothermal plumes transport reduced chemical species and metals into the open ocean. Despite their considerable spatial scale and impact on biogeochemical cycles, niche differentiation of abundant microbial clades is poorly understood. Here, we analyzed the microbial ecology of two bathy- (Brothers volcano; BrV-cone and northwest caldera; NWC) and a mesopelagic (Macauley volcano; McV) plumes on the Kermadec intra-oceanic arc in the South Pacific Ocean. The microbial community structure, determined by a combination of 16S rRNA gene, fluorescence in situ hybridization and metagenome analysis, was similar to the communities observed in other sulfur-rich plumes. This includes a dominance of the vent characteristic SUP05 clade (up to 22% in McV and 51% in BrV). In each of the three plumes analyzed, the community was dominated by a different yet uncultivated chemoautotrophic SUP05 species, here, provisionally named, Candidatus Thioglobus vadi (McV), Candidatus Thioglobus vulcanius (BrV-cone) and Candidatus Thioglobus plumae (BrV-NWC). Statistical analyses, genomic potential and mRNA expression profiles suggested a SUP05 niche partitioning based on sulfide and iron concentration as well as water depth. A fourth SUP05 species was present at low frequency throughout investigated plume samples and may be capable of heterotrophic or mixotrophic growth. Taken together, we propose that small variations in environmental parameters and depth drive SUP05 niche partitioning in hydrothermal plumes.

Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group

Citation
Priest et al. (2022). The ISME Journal 16 (6)
Names (8)
“Arcticimaribacter forsetii” “Arcticimaribacter” “Maricapacicella forsetii” “Maricapacicella” “Marivariicella framensis” “Marivariicella” “Marisimplicoccus” “Marisimplicoccus framensis”
Subjects
Ecology, Evolution, Behavior and Systematics Microbiology
Abstract
AbstractNiche concept is a core tenet of ecology that has recently been applied in marine microbial research to describe the partitioning of taxa based either on adaptations to specific conditions across environments or on adaptations to specialised substrates. In this study, we combine spatiotemporal dynamics and predicted substrate utilisation to describe species-level niche partitioning within the NS5 Marine Group. Despite NS5 representing one of the most abundant marine flavobacterial clades from across the world’s oceans, our knowledge on their phylogenetic diversity and ecological functions is limited. Using novel and database-derived 16S rRNA gene and ribosomal protein sequences, we delineate the NS5 into 35 distinct species-level clusters, contained within four novel candidate genera. One candidate species, “Arcticimaribacter forsetii AHE01FL”, includes a novel cultured isolate, for which we provide a complete genome sequence—the first of an NS5—along with morphological insights using transmission electron microscopy. Assessing species’ spatial distribution dynamics across the Tara Oceans dataset, we identify depth as a key influencing factor, with 32 species preferring surface waters, as well as distinct patterns in relation to temperature, oxygen and salinity. Each species harbours a unique substrate-degradation potential along with predicted substrates conserved at the genus-level, e.g. alginate in NS5_F. Successional dynamics were observed for three species in a time-series dataset, likely driven by specialised substrate adaptations. We propose that the ecological niche partitioning of NS5 species is mainly based on specific abiotic factors, which define the niche space, and substrate availability that drive the species-specific temporal dynamics.

“ Candidatus Ethanoperedens,” a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane

Citation
Hahn et al. (2020). mBio 11 (2)
Names (4)
Ca. Ethanoperedens thermophilum Ca. Ethanoperedens “Desulfofervidus auxilii” Ca. Argarchaeum
Subjects
Microbiology Virology
Abstract
In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes.

Candidatus Ethanoperedens, a thermophilic genus of archaea mediating the anaerobic oxidation of ethane

Citation
Hahn et al. [posted content, 2020]
Names (4)
Ca. Ethanoperedens thermophilum Ca. Ethanoperedens “Desulfofervidus auxilii” Ca. Argarchaeum
Abstract
ABSTRACTCold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as substrate we cultured microbial consortia of a novel anaerobic ethane oxidizer Candidatus Ethanoperedens thermophilum (GoM-Arc1 clade) and its partner bacterium Candidatus Desulfofervidus auxilii previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieving a closed genome of Ca. Ethanoperedens, a sister genus of the recently reported ethane oxidizer Candidatus Argoarchaeum. The metagenome-assembled genome of Ca. Ethanoperedens encoded for a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as sole growth substrate and production of ethyl-coenzyme M as activation product. Stable isotope probing showed that the enzymatic mechanisms of ethane oxidation in Ca. Ethanoperedens is fully reversible, thus its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide.IMPORTANCEIn the seabed gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation, and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of non-methane alkane activation by non-canonical methyl-coenzyme M reductase enzymes, and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes.EtymologyEthanoperedens. ethano, (new Latin): pertaining to ethane; peredens (Latin): consuming, devouring; thermophilum. (Greek): heat-loving. The name implies an organism capable of ethane oxidation at elevated temperatures.LocalityEnriched from hydrothermally heated, hydrocarbon-rich marine sediment of the Guaymas Basin at 2000 m water depth, Gulf of California, Mexico.DiagnosisAnaerobic, ethane-oxidizing archaeon, mostly coccoid, about 0.7 μm in diameter, forms large irregular cluster in large dual-species consortia with the sulfate-reducing partner bacterium ‘Candidatus Desulfofervidus auxilii’.

Dominating Role of an Unusual Magnetotactic Bacterium in the Microaerobic Zone of a Freshwater Sediment

Citation
Spring et al. (1993). Applied and Environmental Microbiology 59 (8)
Names (1)
“Magnetobacterium”
Subjects
Applied Microbiology and Biotechnology Biotechnology Ecology Food Science
Abstract
A combination of polymerase chain reaction-assisted rRNA sequence retrieval and fluorescent oligonucleotide probing was used to identify in situ a hitherto unculturable, big, magnetotactic, rod-shaped organism in freshwater sediment samples collected from Lake Chiemsee. Tentatively named “Magnetobacterium bavaricum,” this bacterium is evolutionarily distant from all other phylogenetically characterized magnetotactic bacteria and contains unusually high numbers of magnetosomes (up to 1,000 magnetosomes per cell). The spatial distribution in the sediment was studied, and up to 7 × 10 5 active cells per cm 3 were found in the microaerobic zone. Considering its average volume (25.8 ± 4.1 μm 3 ) and relative abundance (0.64 ± 0.17%), “M. bavaricum” may account for approximately 30% of the microbial biovolume and may therefore be a dominant fraction of the microbial community in this layer. Its microhabitat and its high content of sulfur globules and magnetosomes suggest that this organism has an iron-dependent way of energy conservation which depends on balanced gradients of oxygen and sulfide.