Amann, Rudolf


Publications
11

Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group

Citation
Priest et al. (2022). The ISME Journal 16 (6)
Names
“Arcticimaribacter forsetii” “Arcticimaribacter” “Maricapacicella forsetii” “Maricapacicella” “Marivariicella framensis” “Marivariicella” “Marisimplicoccus” “Marisimplicoccus framensis”
Abstract
AbstractNiche concept is a core tenet of ecology that has recently been applied in marine microbial research to describe the partitioning of taxa based either on adaptations to specific conditions across environments or on adaptations to specialised substrates. In this study, we combine spatiotemporal dynamics and predicted substrate utilisation to describe species-level niche partitioning within the NS5 Marine Group. Despite NS5 representing one of the most abundant marine flavobacterial clades

Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes

Citation
Dede et al. (2022). The ISME Journal 16 (6)
Names
Ca. Thioglobus vulcanius Ca. Thioglobus vadi Ca. Thioglobus plumae
Abstract
AbstractHydrothermal plumes transport reduced chemical species and metals into the open ocean. Despite their considerable spatial scale and impact on biogeochemical cycles, niche differentiation of abundant microbial clades is poorly understood. Here, we analyzed the microbial ecology of two bathy- (Brothers volcano; BrV-cone and northwest caldera; NWC) and a mesopelagic (Macauley volcano; McV) plumes on the Kermadec intra-oceanic arc in the South Pacific Ocean. The microbial community structure

“ Candidatus Ethanoperedens,” a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane

Citation
Hahn et al. (2020). mBio 11 (2)
Names
Ca. Ethanoperedens thermophilum Ca. Ethanoperedens “Desulfofervidus auxilii” Ca. Argarchaeum
Abstract
In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing

Candidatus Ethanoperedens, a thermophilic genus of archaea mediating the anaerobic oxidation of ethane

Citation
Hahn et al. (2020).
Names
Ca. Ethanoperedens thermophilum Ca. Ethanoperedens “Desulfofervidus auxilii” Ca. Argarchaeum
Abstract
ABSTRACTCold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of Califor