Huanglongbing (HLB) is a destructive disease of citrus caused by phloem-limited bacteria, namely ‘Candidatus Liberibacter asiaticus’ (Las), ‘Candidatus Liberibacter africanus’, and ‘Candidatus Liberibacter americanus’. Although there are no known HLB-resistant citrus species, studies have reported Poncirus trifoliata as being more tolerant. Assuming that callose deposition in the phloem of infected plants can inhibit translocation of photosynthetic products and cause starch accumulation, we compared callose deposition in petioles and starch accumulation in infected leaves of three genotypes (Citrus sinensis, C. sunki, and P. trifoliata) and 15 hybrids (C. sunki × P. trifoliata). Compared with the mock-inoculated plants, higher bacterial counts and greater accumulation of callose and starch were found in C. sinensis, C. sunki, and 10 of the hybrid plants. Lower titer and fewer metabolic changes due to Las infection were observed in P. trifoliata and in two Las-positive hybrids while three hybrids were Las-negative. Callose accumulation was linked to and correlated with genes involved in phloem functionality and starch accumulation was linked to up-regulation of genes involved in starch biosynthesis and repression of those related to starch breakdown. Lower expression of genes involved in phloem functionality in resistant and tolerant plants can partially explain the absence of distinct disease symptoms associated with starch accumulation that are usually observed in HLB-susceptible genotypes.
Huanglongbing (HLB), caused by the bacterium ‘Candidatus Liberibacter’ spp., is currently one of the most serious diseases of citrus plants and has caused substantial economic losses. Thus far, there is no source of genetic resistance to HLB in the genus Citrus or its relatives. However, several studies have reported Poncirus trifoliata and some of its hybrids to be more tolerant to the disease. The main objective of this study was to report differences in the incidence of ‘Ca. L. asiaticus’ infection in citrandarin plants, hybrids from Sunki mandarin (Citrus sunki (Hayata) hort. ex Tanaka), and trifoliate orange Rubidoux (P. trifoliata (L.) Raf.)), after conducting an extensive survey under field conditions. These hybrid plants were established for approximately 7 years in an area with a high incidence of ‘Ca. L. asiaticus’-infected plants. We selected two experimental areas (area A and area B), located approximately 10 m apart. Area A consists of Pera sweet orange (C. sinensis (L.) Osb.) grafted onto 56 different citrandarin rootstocks. Area B consists of citrandarin scions grafted onto Rangpur lime (C. limonia Osb.) rootstock. Bacteria in the leaves and roots were detected using real-time quantitative polymerase chain reaction. The incidence of ‘Ca. L. asiaticus’-infected plants was 92% in area A and 14% in area B. Because infected plants occurred in both areas, we examined whether the P. trifoliata hybrid rootstock influenced HLB development and also determined the distribution of ‘Ca. L. asiaticus’ in Citrus tree tissues. Although this survey does not present evidence regarding the resistance of P. trifoliata and its hybrids in relation to bacteria or psyllids, future investigation, mainly using the most promising hybrids for response to ‘Ca. L. asiaticus’, will help us to understand the probable mechanism of defense or identifying compounds in P. trifoliata and its hybrids that are very important as strategy to combat HLB. Details of these results are presented and discussed in this article.