General Physics and Astronomy


Publications
20

Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp

Citation
Irigoyen et al. (2020). Nature Communications 11 (1)
Names
Liberibacter
Abstract
AbstractA major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibac

Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution

Citation
Dombrowski et al. (2020). Nature Communications 11 (1)
Names
“Undinarchaeum marinum” “Undinarchaeaceae” “Naiadarchaeaceae” “Undinarchaeales” “Naiadarchaeales” “Undinarchaeota” “Undinarchaeia”
Abstract
AbstractThe recently discovered DPANN archaea are a potentially deep-branching, monophyletic radiation of organisms with small cells and genomes. However, the monophyly and early emergence of the various DPANN clades and their role in life’s evolution are debated. Here, we reconstructed and analysed genomes of an uncharacterized archaeal phylum (CandidatusUndinarchaeota), revealing that its members have small genomes and, while potentially being able to conserve energy through fermentation, like

Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea

Citation
Hua et al. (2019). Nature Communications 10 (1)
Names
Ca. Methanoproducendum senex
Abstract
Abstract Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phy

Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

Citation
Anantharaman et al. (2016). Nature Communications 7 (1)
Names
“Ozemibacteria”
Abstract
AbstractThe subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth’s biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complet