Computer Science Applications


Publications
35

Production and Excretion of Polyamines To Tolerate High Ammonia, a Case Study on Soil Ammonia-Oxidizing Archaeon “ Candidatus Nitrosocosmicus agrestis”

Citation
Liu et al. (2021). mSystems 6 (1)
Names
Ca. Nitrosocosmicus Ca. Nitrosocosmicus agrestis
Abstract
Ammonia tolerance of AOA is usually much lower than that of the AOB, which makes the AOB rather than AOA a predominant ammonia oxidizer in agricultural soils, contributing to global N 2 O emission. Recently, some AOA species from the genus “ Ca. Nitrosocosmicus” were also found to have high ammonia tolerance.

Genomes of the “ Candidatus Actinomarinales” Order: Highly Streamlined Marine Epipelagic Actinobacteria

Citation
López-Pérez et al. (2020). mSystems 5 (6)
Names
“Actinomarinales”
Abstract
Microbiology is in a new age in which sequence databases are primary sources of information about many microbes. However, in-depth analysis of environmental genomes thus retrieved is essential to substantiate the new knowledge.

‘Candidatus Liberibacter Asiaticus’ SDE1 Effector Induces Huanglongbing Chlorosis by Downregulating Host DDX3 Gene

Citation
Zhou et al. (2020). International Journal of Molecular Sciences 21 (21)
Names
Ca. Liberibacter asiaticus Liberibacter
Abstract
‘Candidatus Liberibacter asiaticus’ (CLas) is the pathogenic bacterium that causes the disease Huanglongbing (HLB) in citrus and some model plants, such as Nicotiana benthamiana. After infection, CLas releases a set of effectors to modulate host responses. One of these critical effectors is Sec-delivered effector 1 (SDE1), which induces chlorosis and cell death in N. benthamiana. In this study, we revealed the DEAD-box RNA helicase (DDX3) interacts with SDE1. Gene silencing study revealed that k

Linking metabolic phenotypes to pathogenic traits among “Candidatus Liberibacter asiaticus” and its hosts

Citation
Zuñiga et al. (2020). npj Systems Biology and Applications 6 (1)
Names
Ca. Liberibacter asiaticus
Abstract
AbstractCandidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing, a lethal vector-borne disease affecting citrus crops worldwide. While comparative genomics has provided preliminary insights into the metabolic capabilities of this uncultured microorganism, a comprehensive functional characterization is currently lacking. Here, we reconstructed and manually curated genome-scale metabolic models for the six CLas strains A4, FL17, gxpsy, Ishi-1, psy62, and YCPsy, in addition

Acid Soil Improvement Enhances Disease Tolerance in Citrus Infected by Candidatus Liberibacter asiaticus

Citation
Li et al. (2020). International Journal of Molecular Sciences 21 (10)
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB) is a devastating citrus disease that has caused massive economic losses to the citrus industry worldwide. The disease is endemic in most citrus-producing areas of southern China, especially in the sweet orange orchards where soil acidification has intensified. In this work, we used lime as soil pH amendment to optimize soil pH and enhance the endurance capacity of citrus against Candidatus Liberibacter asiaticus (CLas). The results showed that regulation of soil acidity is ef

A Novel ‘Candidatus Liberibacter asiaticus’-Encoded Sec-Dependent Secretory Protein Suppresses Programmed Cell Death in Nicotiana benthamiana

Citation
Zhang et al. (2019). International Journal of Molecular Sciences 20 (22)
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ (CLas) is one of the causal agents of citrus Huanglongbing (HLB), a bacterial disease of citrus trees that greatly reduces fruit yield and quality. CLas strains produce an array of currently uncharacterized Sec-dependent secretory proteins. In this study, the conserved chromosomally encoded protein CLIBASIA_03875 was identified as a novel Sec-dependent secreted protein. We show that CLIBASIA_03875 contains a putative Sec- secretion signal peptide (SP), a 29 am

Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus

Citation
Ying et al. (2019). International Journal of Molecular Sciences 20 (22)
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. HLB is associated with the non-culturable bacterium, Candidatus Liberibacter asiaticus (CaLas) in the United States. The virulence mechanism of CaLas is largely unknown, partly because of the lack of a mutant library. In this study, Tobacco mosaic virus (TMV) and Nicotiana benthamiana (N. benthamiana) were used for large-scale screening of the virulence factors of CaLas. Agroinfiltration of 6

Comparative Genomics Reveals Ecological and Evolutionary Insights into Sponge-Associated Thaumarchaeota

Citation
Zhang et al. (2019). mSystems 4 (4)
Names
“Cenoporarchaeum stylissae” “Cenoporarchaeum”
Abstract
Sponges represent ecologically important models to understand the evolution of symbiotic interactions of metazoans with microbial symbionts. Thaumarchaeota are commonly found in sponges, but their potential adaptations to a host-associated lifestyle are largely unknown. Here, we present three novel sponge-associated thaumarchaeal species and compare their genomic and predicted functional features with those of closely related free-living counterparts. We foun

Integrated Omic Analyses Provide Evidence that a “ Candidatus Accumulibacter phosphatis” Strain Performs Denitrification under Microaerobic Conditions

Citation
Camejo et al. (2019). mSystems 4 (1)
Names
“Accumulibacter phosphatis”
Abstract
“ Candidatus Accumulibacter phosphatis” is widely found in full-scale wastewater treatment plants, where it has been identified as the key organism for biological removal of phosphorus. Since aeration can account for 50% of the energy use during wastewater treatment, microaerobic conditions for wastewater treatment have emerged as a cost-effective alternative to conventional biological nutrient removal processes. Our report provides strong genomics-based evid