The considerable economic losses in citrus associated with ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ presence have alerted all producing regions of the world. In Chile, none of these bacteria have been reported in citrus species. During the years 2017 and 2019, 258 samples presenting symptoms similar to those associated with the presence of these bacteria were examined. No detection of ‘Ca. Liberibacter’ associated with “huanglongbing” disease was obtained in the tested samples; therefore, this quarantine pest is maintained as absent in Chile. However, 14 plants resulted positive for phytoplasmas enclosed in subgroups 16SrV-A (12 plants) and 16SrXIII-F (2 plants). Although they have been found in other plant species, this is the first report of these phytoplasmas in citrus worldwide.
Florida citrus production has declined 75% due to Huanglongbing (HLB), a disease caused by the pathogenic bacterium Candidatus Liberibacter asiaticus (CLas). Methods to combat CLas are costly and only partially effective. The cross-compatible species Poncirus trifoliata and some of its hybrids are known to be highly tolerant to CLas, and thus can potentially serve as an alternative feedstock for many citrus products. To further investigate the commercial potential of citrus hybrids, three citrus hybrids, US-802, US-897, and US-942, were studied for their potential as feedstocks for citrus co-products using steam explosion (STEX) followed by water extraction. Up to 93% of sugars were recovered. US-897 and US-942 have similar volatile profiles to that of the commercial citrus fruit types and as much as 85% of these volatiles could be recovered. Approximately 80% of the pectic hydrocolloids present in all three hybrids could be obtained in water washes of STEX material. Of the phenolics identified, the flavanone glycosides, i.e., naringin, neohesperidin, and poncirin were the most abundant quantitatively in these hybrids. The ability to extract a large percentage of these compounds, along with their inherent values, make US-802, US-897, and US-942 potentially viable feedstock sources for citrus co-products in the current HLB-blighted environment.
The γ-proteobacterium ‘Candidatus Arsenophonus phytopathogenicus’ is assigned as the major pathogen of “Syndrome des basses richesses”, a sugar beet disease characterised by a reduction in the sugar content of taproots and biomass yield. Despite the economic impact of this bacteriosis, diagnostics for this important pathogen currently rely on end-point PCR detection. Herein, we introduce a TaqMan qPCR for diagnostics of the agent targeting genes encoding a heat shock protein of the Hsp20 family and mannose-6-phosphate isomerase. Quantitation with synthetic oligonucleotides as standard showed that the developed TaqMan qPCR assays enable the detection of up to 100 target copies. A comparison between the TaqMan qPCR and end-point PCR for ‘Ca. A. phytopathogenicus’ detection was carried out on 78 sugar beet samples from different locations in southern Germany. The newly developed assays enable the fast, reliable and sensitive detection of ‘Ca. A. phytopathogenicus’ in sugar beet.
Huanglongbing (HLB) pathogen Candidatus Liberibacter asiaticus (CLas) brings a great concern about the phloem nutrient transport in diseased plants. There is an urgent need to find the best management strategies to reduce the losses in the citrus industry worldwide. Endophytic bacteria are negatively affected by CLas pathogen, and these endophytes are associated with improved availability of nutrients and pathogen resistance. This study underpins the relationship between CLas pathogen, endophyte population and nutrients availability in citrus plants. The citrus plants were treated with Bacillus subtilis L1-21 and Hoagland solution to find out synergism efficacy to mitigate citrus HLB. We showed that citrus shoots in the presence of 50% Hoagland solution displayed maximum number of endophytes with 6.28 × 103 to 3.04 × 105 CFU/g. Among 50 candidate strains, B. subtilis L1-21 emerged as potential antagonist against surrogate strain Xanthomonas citri subsp. citri. The citrus half-leaf method identified that application of endophyte L1-21 with 50% Hoagland solution successfully reduces the CLas abundance. We point out that this combination results in a higher number of endophytes population with 2.52 × 104 to 9.11 × 106 CFU/g after 60 days, and reduces CLas pathogen abundance in asymptomatic HLB plants. In HLB symptomatic citrus plants, B. subtilis L1-21 potentially increases the endophyte population from 1.11 × 104 to 5.26 × 107 CFU/g in the presence of Hoagland solution, and pathogen abundance was reduced from 9.51 × 105 to 1.06 × 104 copies/g. Altogether, we suggested that the presence of endophyte L1-21 with Hoagland solution is more effective in HLB asymptomatic citrus plants, but a slight reduction of pathogen was observed in symptomatic plants. The findings revealed the role of indigenous citrus endophyte B. subtilis L1-21 along with other nutrients in the reduction of CLas pathogen abundance inside symptomatic and asymptomatic plants in citrus endophyte–nutrient–pathogen interplay.
Citrus production is facing an unprecedented problem because of huanglongbing (HLB) disease. Presently, no effective HLB-easing method is available when citrus becomes infected. Guanosine 5′-monophosphate synthetase (GMPS) is a key protein in the de novo synthesis of guanine nucleotides. GMPS is used as an attractive target for developing agents that are effective against the patogen infection. In this research, homology modeling, structure-based virtual screening, and molecular docking were used to discover the new inhibitors against CLas GMPS. Enzyme assay showed that folic acid and AZD1152 showed high inhibition at micromole concentrations, with AZD1152 being the most potent molecule. The inhibition constant (Ki) value of folic acid and AZD1152 was 51.98 µM and 4.05 µM, respectively. These results suggested that folic acid and AZD1152 could be considered as promising candidates for the development of CLas agents.
Understanding how phytoplasmas move and multiply within the host plant is fundamental for plant–pathogen interaction studies. In recent years, the tomato has been used as a model plant to study this type of interaction. In the present work, we investigated the distribution and multiplication dynamics of one strain of ‘Candidatus Phytoplasma (Ca. P.) solani’ (16SrXII-A) in tomato (Solanum lycopersicum L., cv. Micro-Tom) plants. We obtained infected plants by grafting, a fast and effective method to maintain phytoplasma infection. In planta spread and multiplication of ‘Ca. P. solani’ was monitored over time using qualitative and quantitative qPCR. Root, apical shoot, lower leaves, and upper leaves were sampled at each sampling time. We hypothesized that ‘Ca. P. solani’ from the grafting site reached firstly the highest leaf, the apex and the roots; subsequently, the phytoplasmas spread to the rest of the upper leaves and then progressively to the lower leaves. Significant differences were found in ‘Ca. P. solani’ titer among different plant tissues. In particular, the concentration of phytoplasma in the roots was significantly higher than that in the other plant compartments in almost all the sampling dates. Since the roots show rapid colonization and the highest concentration of phytoplasmas, they represent the ideal tissue to sample for an early, sensitive and robust diagnosis.
A novel Borrelia species, Candidatus Borrelia javanense, was found in ectoparasite ticks, Amblyomma javanense, from Manis javanica pangolins seized in anti-smuggling operations in southern China. Overall, 12 tick samples in 227 (overall prevalence 5.3%) were positive for Candidatus B. javanense, 9 (5.1%) in 176 males, and 3 (5.9%) in 51 females. The phylogenetic analysis, based on the 16S rRNA gene and the flagellin gene sequences of the Borrelia sp., exhibited strong evidence that Candidatus B. javanense did not belong to the Lyme disease Borrelia group and the relapsing fever Borrelia group but another lineage of Borrelia. The discovery of the novel Borrelia species suggests that A. javanense may be the transmit vector, and the M. javanica pangolins should be considered a possible origin reservoir in the natural circulation of these new pathogens. To our knowledge, this is the first identification of a novel Borrelia species agent in A. javanense from pangolins. Whether the novel agent is pathogenic to humans is unknown and needs further research.
Background: ‘Candidatus Liberibacter asiaticus’ (CLas) is a major causal agent of citrus greening disease. The disease primarily involves an asymptomatic, often latent infection of CLas. However, there is no effective technique to distinguish latent-infected trees from healthy ones. This study describes the development of a new detection method for latent CLas infection using cuttings. Methods: Root tissues regenerated from cuttings using symptomatic and asymptomatic citrus trees were prepared for real-time a polymerase chain reaction (PCR) test which was used to investigate latent CLas. When some of the regenerated roots were negative for CLas in the first real-time PCR assay, a subsequent cultivation in soils was performed using the CLas-negative cuttings. CLas development during cultivation was evaluated by a second real-time PCR assay using soil-grown roots from seedlings. Results: Previously, CLas had not been detected from leaves of the latent-infected trees in our greenhouse by real-time PCR. In this study, however, CLas was detected at a moderate frequency from the root tissues of cuttings derived from the latent-infected trees, by the same PCR test. For cuttings with regenerated roots that tested negative for CLas by real-time PCR, CLas was frequently detected from roots grown in nursery soil with autoclaving, after cultivation for a month or more. Conclusions: Latent infection with CLas was detectable by real-time PCR using root tissues regenerated by cuttings and roots grown in nursery soil with autoclaving. These results suggest that the new method of investigation would provide great opportunities for early detection of CLas in asymptomatic citrus trees from field surveys, and would accelerate the eradication practice of citrus greening.
A man with a well-controlled HIV infection, previously diagnosed with lymphogranuloma venereum and treated for Hodgkin’s lymphoma, was suffering from chronic diarrhea. He travelled to Indonesia in the month prior to the start of complaints. Over a 15-month period, sequences related to Campylobactertroglodytis/upsaliensis, C. pinnepediorum/mucosalis/concisus and C. hominis were detected by 16S rRNA qPCR-based assays in various stool samples and in a colon biopsy. Culture revealed the first isolation of “candidatus Campylobacter infans”, a species identified recently by molecular methods only. The patient was treated with azithromycin, ciprofloxacin and tetracycline. To identify potential continuous exposure of the patient to Campylobacter, stool samples of the partner and the cat of the patient were analyzed and C. pinnepediorum/mucosalis/concisus and C. helveticus, respectively, were detected. The diversity in detected species in this immunocompromised patient with a lack of repeatedly consistent findings resulted in the conclusion that not any of the Campylobacter species was the primary cause of the clinical condition. This study shows the challenges in detection and interpretation of diagnostic results regarding Campylobacter.