ABSTRACT
Bacterial cells can vary greatly in size, from a few hundred nanometers to hundreds of micrometers in diameter. Filamentous cable bacteria also display substantial size differences, with filament diameters ranging from 0.4 to 8 µm. We analyzed the genomes of cable bacterium filaments from 11 coastal environments of which the resulting 23 new genomes represent 10 novel species-level clades of
Candidatus
Electrothrix and two clades that putatively represent novel genus-level diversity. Fluorescence
in situ
hybridization with a species-level probe showed that large-sized cable bacteria belong to a novel species with the proposed name
Ca
. Electrothrix gigas. Comparative genome analysis suggests genes that play a role in the construction or functioning of large cable bacteria cells: the genomes of
Ca
. Electrothrix gigas encode a novel actin-like protein as well as a species-specific gene cluster encoding four putative pilin proteins and a putative type II secretion platform protein, which are not present in other cable bacteria. The novel actin-like protein was also found in a number of other giant bacteria, suggesting there could be a genetic basis for large cell size. This actin-like protein (denoted big bacteria protein, Bbp) may have a function analogous to other actin proteins in cell structure or intracellular transport. We contend that Bbp may help overcome the challenges of diffusion limitation and/or morphological complexity presented by the large cells of
Ca
. Electrothrix gigas and other giant bacteria.
IMPORTANCE
In this study, we substantially expand the known diversity of marine cable bacteria and describe cable bacteria with a large diameter as a novel species with the proposed name
Candidatus
Electrothrix gigas. In the genomes of this species, we identified a gene that encodes a novel actin-like protein [denoted big bacteria protein (Bbp)]. The
bbp
gene was also found in a number of other giant bacteria, predominantly affiliated to Desulfobacterota and Gammaproteobacteria, indicating that there may be a genetic basis for large cell size. Thus far, mostly structural adaptations of giant bacteria, vacuoles, and other inclusions or organelles have been observed, which are employed to overcome nutrient diffusion limitation in their environment. In analogy to other actin proteins, Bbp could fulfill a structural role in the cell or potentially facilitate intracellular transport.
Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. “
Candidatus
Liberibacter asiaticus” is one of the most common putative causal agents of HLB. Phages of “
Ca
. Liberibacter asiaticus”
AbstractMethanogenic and methanotrophic archaea produce and consume the greenhouse gas methane, respectively, using the reversible enzyme methyl-coenzyme M reductase (Mcr). Recently, Mcr variants that can activate multicarbon alkanes have been recovered from archaeal enrichment cultures. These enzymes, called alkyl-coenzyme M reductase (Acrs), are widespread in the environment but remain poorly understood. Here we produced anoxic cultures degrading mid-chain petroleum n-alkanes between pentane (C5) and tetradecane (C14) at 70 °C using oil-rich Guaymas Basin sediments. In these cultures, archaea of the genus Candidatus Alkanophaga activate the alkanes with Acrs and completely oxidize the alkyl groups to CO2. Ca. Alkanophaga form a deep-branching sister clade to the methanotrophs ANME-1 and are closely related to the short-chain alkane oxidizers Ca. Syntrophoarchaeum. Incapable of sulfate reduction, Ca. Alkanophaga shuttle electrons released from alkane oxidation to the sulfate-reducing Ca. Thermodesulfobacterium syntrophicum. These syntrophic consortia are potential key players in petroleum degradation in heated oil reservoirs.
The Asian citrus psyllid (ACP) is an important vector of the HLB pathogen, which is a major threat to citrus production around the world. Bacterial communities harbored by insects could be affected by different environmental factors.