Physiology


Publications (72)

Indications for a genetic basis for big bacteria and description of the giant cable bacterium Candidatus Electrothrix gigas sp. nov

Citation
Geelhoed et al. (2023). Microbiology Spectrum
Names (2)
Ca. Electrothrix gigas Ca. Electrothrix
Subjects
Cell Biology Ecology General Immunology and Microbiology Genetics Infectious Diseases Microbiology (medical) Physiology
Abstract
ABSTRACT Bacterial cells can vary greatly in size, from a few hundred nanometers to hundreds of micrometers in diameter. Filamentous cable bacteria also display substantial size differences, with filament diameters ranging from 0.4 to 8 µm. We analyzed the genomes of cable bacterium filaments from 11 coastal environments of which the resulting 23 new genomes represent 10 novel species-level clades of Candidatus Electrothrix and two clades that putatively represent novel genus-level diversity. Fluorescence in situ hybridization with a species-level probe showed that large-sized cable bacteria belong to a novel species with the proposed name Ca . Electrothrix gigas. Comparative genome analysis suggests genes that play a role in the construction or functioning of large cable bacteria cells: the genomes of Ca . Electrothrix gigas encode a novel actin-like protein as well as a species-specific gene cluster encoding four putative pilin proteins and a putative type II secretion platform protein, which are not present in other cable bacteria. The novel actin-like protein was also found in a number of other giant bacteria, suggesting there could be a genetic basis for large cell size. This actin-like protein (denoted big bacteria protein, Bbp) may have a function analogous to other actin proteins in cell structure or intracellular transport. We contend that Bbp may help overcome the challenges of diffusion limitation and/or morphological complexity presented by the large cells of Ca . Electrothrix gigas and other giant bacteria. IMPORTANCE In this study, we substantially expand the known diversity of marine cable bacteria and describe cable bacteria with a large diameter as a novel species with the proposed name Candidatus Electrothrix gigas. In the genomes of this species, we identified a gene that encodes a novel actin-like protein [denoted big bacteria protein (Bbp)]. The bbp gene was also found in a number of other giant bacteria, predominantly affiliated to Desulfobacterota and Gammaproteobacteria, indicating that there may be a genetic basis for large cell size. Thus far, mostly structural adaptations of giant bacteria, vacuoles, and other inclusions or organelles have been observed, which are employed to overcome nutrient diffusion limitation in their environment. In analogy to other actin proteins, Bbp could fulfill a structural role in the cell or potentially facilitate intracellular transport.

Distribution, abundance, and ecogenomics of the Palauibacterales , a new cosmopolitan thiamine-producing order within the Gemmatimonadota phylum

Citation
Aldeguer-Riquelme et al. (2023). mSystems
Names (25)
Palauibacter ramosifaciens Palauibacter polyketidifaciens Kutchimonas denitrificans Ts Carthagonibacter metallireducens Ts Palauibacter denitrificans Palauibacter irciniicola Palauibacter australiensis Palauibacter poriticola Palauibacter rhopaloidicola Palauibacter scopulicola Palauibacter soopunensis Ts Benthicola azotiphorus Indicimonas acetifermentans Ts Benthicola marisminoris Ts Caribbeanibacter nitroreducens Ts Humimonas hydrogenitrophica Ts Kutchimonas Indicimonas Carthagonibacter Caribbeanibacter Humimonas Benthicola Palauibacter Palauibacterales Palauibacteraceae
Subjects
Biochemistry Computer Science Applications Ecology, Evolution, Behavior and Systematics Genetics Microbiology Modeling and Simulation Molecular Biology Physiology
Abstract
ABSTRACT The phylum Gemmatimonadota comprises mainly uncultured microorganisms that inhabit different environments such as soils, freshwater lakes, marine sediments, sponges, or corals. Based on 16S rRNA gene studies, the group PAUC43f is one of the most frequently retrieved Gemmatimonadota in marine samples. However, its physiology and ecological roles are completely unknown since, to date, not a single PAUC43f isolate or metagenome-assembled genome (MAG) has been characterized. Here, we carried out a broad study of the distribution, abundance, ecotaxonomy, and metabolism of PAUC43f, for which we propose the name of Palauibacterales . This group was detected in 4,965 16S rRNA gene amplicon datasets, mainly from marine sediments, sponges, corals, soils, and lakes, reaching up to 34.3% relative abundance, which highlights its cosmopolitan character, mainly salt-related. The potential metabolic capabilities inferred from 52 Palauibacterales MAGs recovered from marine sediments, sponges, and saline soils suggested a facultative aerobic and chemoorganotrophic metabolism, although some members may also oxidize hydrogen. Some Palauibacterales species might also play an environmental role as N 2 O consumers as well as suppliers of serine and thiamine. When compared to the rest of the Gemmatimonadota phylum, the biosynthesis of thiamine was one of the key features of the Palauibacterales . Finally, we show that polysaccharide utilization loci (PUL) are widely distributed within the Gemmatimonadota so that they are not restricted to Bacteroidetes , as previously thought. Our results expand the knowledge about this cryptic phylum and provide new insights into the ecological roles of the Gemmatimonadota in the environment. IMPORTANCE Despite advances in molecular and sequencing techniques, there is still a plethora of unknown microorganisms with a relevant ecological role. In the last years, the mostly uncultured Gemmatimonadota phylum is attracting scientific interest because of its widespread distribution and abundance, but very little is known about its ecological role in the marine ecosystem. Here we analyze the global distribution and potential metabolism of the marine Gemmatimonadota group PAUC43f, for which we propose the name of Palauibacterales order. This group presents a saline-related character and a chemoorganoheterotrophic and facultatively aerobic metabolism, although some species might oxidize H 2 . Given that Palauibacterales is potentially able to synthesize thiamine, whose auxotrophy is the second most common in the marine environment, we propose Palauibacterales as a key thiamine supplier to the marine communities. This finding suggests that Gemmatimonadota could have a more relevant role in the marine environment than previously thought.

Pathogenicity and Transcriptomic Analyses of Two “ Candidatus Liberibacter asiaticus” Strains Harboring Different Types of Phages

Citation
Zheng et al. (2023). Microbiology Spectrum 11 (3)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Cell Biology Ecology General Immunology and Microbiology Genetics Infectious Diseases Microbiology (medical) Physiology
Abstract
Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. “ Candidatus Liberibacter asiaticus” is one of the most common putative causal agents of HLB. Phages of “ Ca . Liberibacter asiaticus”

An effector of ‘Candidatus Liberibacter asiaticus’ manipulates autophagy to promote bacterial infection

Citation
Shi et al. (2023). Journal of Experimental Botany
Names (1)
Ca. Liberibacter asiaticus
Subjects
Physiology Plant Science
Abstract
Abstract Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. ‘Wanjincheng’ orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.

Environmental Factors Affect the Bacterial Community in Diaphorina citri , an Important Vector of “ Candidatus Liberibacter asiaticus”

Citation
Jiang et al. (2023). Microbiology Spectrum 11 (2)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Cell Biology Ecology General Immunology and Microbiology Genetics Infectious Diseases Microbiology (medical) Physiology
Abstract
The Asian citrus psyllid (ACP) is an important vector of the HLB pathogen, which is a major threat to citrus production around the world. Bacterial communities harbored by insects could be affected by different environmental factors.

Candidatus Phytoplasma ziziphi encodes non-classically secreted proteins that suppress hypersensitive cell death response in Nicotiana benthamiana

Citation
Gao et al. (2023). Phytopathology Research 5 (1)
Names (1)
Ca. Phytoplasma ziziphi
Subjects
Biochemistry, Genetics and Molecular Biology (miscellaneous) Genetics Physiology Plant Science
Abstract
AbstractIncreasing evidence is proving the biological significance of the phytoplasma-secreted proteins. However, besides a few Sec-dependent secretory proteins, no other phytoplasma-secreted proteins have been reported yet. Candidatus Phytoplasma ziziphi is a phytoplasma that causes witches’-broom, a devastating jujube disease prevalent in east Asia. In this study, using the SecretomeP server coupled with an Escherichia coli-based alkaline phosphatase assay, we identified 25 non-classically secreted proteins (ncSecPs) from Ca. P. ziziphi, a novel type of secreted protein associated with phytoplasmas. Among them, six were characterized as hypersensitive cell death response (HR) suppressors that significantly attenuated both Bax- and INF1-triggered HR and H2O2 accumulation in Nicotiana benthamiana, indicating a so-far unknown role of the phytoplasma-secreted proteins. Further, we demonstrated that despite the diverse subcellular localizations in the N. benthamiana cells, the six HR-suppressing ncSecPs enhanced the gene expression of several known cell death inhibitors, including pathogenesis-related proteins (NbPR-1, NbPR-2, and NbPR-5) and Bax inhibitor-1 (NbBI-1 and NbBI-2). Together, our data indicated that Ca. P. ziziphi has evolved an arsenal of ncSecPs that jointly circumvent HR by activating the plant cell death inhibitors, thus providing new insight into understanding the pathogenesis of phytoplasmas.

Genetic Diversity of “ Candidatus Liberibacter asiaticus” Based on Four Hypervariable Genomic Regions in China

Citation
Gao et al. (2022). Microbiology Spectrum 10 (6)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Cell Biology Ecology General Immunology and Microbiology Genetics Infectious Diseases Microbiology (medical) Physiology
Abstract
The hypervariable genomic regions derived from 35 published C Las genomes were used to decipher the genetic diversity of C Las strains and identify 10 new strains with high variations in prophage regions. Characterizing these variations in the C Las bacteria might provide insight into their evolution and adaptation to host plants and insects in China.

Comparative Genomic Insights into the Evolution of Halobacteria -Associated “ Candidatus Nanohaloarchaeota”

Citation
Zhao et al. (2022). mSystems 7 (6)
Names (1)
Ca. Nanohaloarchaeota
Subjects
Biochemistry Computer Science Applications Ecology, Evolution, Behavior and Systematics Genetics Microbiology Modeling and Simulation Molecular Biology Physiology
Abstract
The DPANN superphylum is a group of archaea widely distributed in various habitats. They generally have small cells and have a symbiotic lifestyle with other archaea.

Candidatus Liberibacter asiaticus accumulation in the phloem inhibits callose and reactive oxygen species

Citation
Bernardini et al. (2022). Plant Physiology 190 (2)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Genetics Physiology Plant Science
Abstract
CLas inhibits callose deposition in the sieve pores and the accumulation of reactive oxygen species to favor its cell-to-cell movement.