Stone fruits are a multi-billion-dollar industry for the U.S. and Canada, one that has repeatedly suffered significant economic losses to outbreaks of the X-disease phytoplasma (Candidatus Phytoplasma pruni) over the last century. Orchards and entire production areas have been abandoned, with corresponding losses to growers, fruit packers, and consumers. The most recent outbreak, in the U.S. Pacific Northwest, caused an estimated $65 million (USD) in lost revenue between 2015 and 2020 and is only increasing in incidence. Already present across much of the continental U.S. and Canada, the phytoplasma has a broad host range beyond stone fruit and is transmitted by at least eight leafhopper species therefore stone fruit production in any state is at significant risk. This recovery plan was produced as part of the National Plant Disease Recovery System (NPDRS) and is intended to provide a review of pathogen biology, assess the status of critical recovery components, and identify disease management research, extension, and education needs.
The citrus industry in Florida faces a destructive endemic disease, known as huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus (CLas), a phloem-limited bacterium, and transmitted by the Asian citrus psyllid (ACP). Rootstocks are regarded as critical to keep citrus production commercially viable and help trees cope with the disease. Although most scions are susceptible, some rootstocks are HLB-tolerant and may influence ACP infestation and CLas colonization and therefore the grafted tree tolerance. This study aimed to elucidate the relative influence of rootstock and scion on insect vector infestation and CLas colonization under natural HLB-endemic conditions. Seven commercial rootstock cultivars with different genetic backgrounds were grafted with ‘Valencia’ sweet orange (Citrus sinensis) or were self-grafted (non-‘Valencia’) and planted in an open field where ACP and CLas were abundant. ACP infestation was determined weekly during periods of leaf flushing, and leaves and roots were analyzed every 3 months to determine CLas titers. Trees with ‘Valencia’ scion were more attractive to the psyllids than non-‘Valencia’ scions. This was also associated with a higher number of bacteria and a larger abundance of foliar HLB symptoms. The influence of the rootstock on the psyllid attraction of grafted ‘Valencia’ scion was less evident, and leaf CLas titers were similar regardless of the rootstock. Among the non-‘Valencia’ scions, Carrizo had the lowest and US-942 the highest leaf CLas titers. Root CLas titers also varied among cultivars, and standard sour orange roots harbored more bacteria than some trifoliate orange hybrid rootstocks such as US-942. In some trees, CLas was detected first in the roots 4 months after planting, but root CLas titers remained low throughout the study. In contrast, leaf CLas titers increased over time and were considerably higher than root titers from 7 months until the end of the study, 15 months after planting. Overall, the results of this study demonstrate a greater relative influence of the scion than the rootstock on ACP infestation and CLas colonization during the early stages of infection. This suggests that other cultivar-specific traits, such as the ability to tolerate other stresses and to absorb water and nutrients more efficiently, along with influences on the scion phenology, may play a larger role in the rootstock influence on the grafted tree tolerance during the later stages of HLB progression.
In Europe and the Mediterranean region, ‘Candidatus Liberibacter solanacearum’ (Lso) is associated with emerging diseases of Apiaceae crops, mainly carrot. Emergency measures for import of carrot seed were set, requiring seed to be heat-treated at 50°C or tested as Lso-negative by PCR. The germination response to heat treatment was assessed for 24 carrot cultivar and hybrid seed lots. Ten parsley, five fennel, and two celery seed lots were also analysed. Of these 41 seed lots, 21 were Lso-infected. Water heat treatment significantly decreased germinability compared to dry heat treatment, indicating that dry heat treatment is a cheaper and less detrimental procedure. However, the dry heat treatment significantly decreased seed germination compared to untreated controls in four of 24 seed lots of carrot, four of ten parsley seed lots, three of five fennel seed lots, and one of two celery seed lots. For parsley, the heat treatment reduced germinability to a lesser extent in Lso-infected than Lso-free seed lots. These data show that heat treatment can affect the germination of Apiaceae seeds to varying degrees, depending on species or variety, the type of heat treatment, and the sanitary status of the seeds.
Las variedades de papa (Solanum tuberosum L.) producidas en México son susceptibles a Candidatus Liberibacter solanacearum (CaLso), causante de la enfermedad conocida como ‘manchado interno de la pulpa’, por lo que se requiere conocer la respuesta de genotipos experimentales a la bacteria. El presente estudio tuvo como objetivo evaluar el efecto de la infección de los haplotipos LsoA + LsoB de CaLso en el follaje, la biomasa seca y la calidad de tubérculo de papa, variedad Fianna, una colecta de Solanum demissum y los clones experimentales T90-1-63 y T05-13-21 de Solanum spp. El manchado interno de la pulpa del tubérculo se determinó mediante análisis de imágenes de tubérculos. Las plantas de Fianna mostraron la mayor severidad de daño foliar; en cambio, los clones experimentales presentaron 17 % menos daño foliar que Fianna y 8 % más daño foliar que S. demissum. Este último fue el genotipo con la mayor biomasa seca de hoja y produjo tubérculos de un tamaño pequeño; las plantas infectadas de S. demissum presentaron mayor número de tubérculos y mayor rendimiento de tubérculo fresco que las plantas sin inoculación, aunque tuvieron la menor proporción de superficie sana del tubérculo. El clon T90-1-63 presentó los porcentajes más altos de superficie sana de tubérculo (> 79 %) y las menores intensidades del manchado interno de la pulpa del tubérculo.
A survey of weeds was undertaken in a palm nursery affected by lethal bronzing (LB) to identify a reservoir host of the causal phytoplasma. Three common species were identified; Urochloa maxima (Guineagrass), Sporobolus indicus (smut grass), and Cyperus esculentus (yellow nutsedge) and sampled over a period of 2 years. Each species was sampled 36 times and all three species were negative for the LB phytoplasma. However, three specimens of C. esculentus tested positive for the phytoplasma species ‘Candidatus Phytoplasma brasiliense’. These findings represent the first documented case of ‘Ca. P. brasiliense’ in North America, specifically in Florida, U.S.A., as well as a new host record for the phytoplasma and the first monocot host documented. Because of the impact this phytoplasma has on papaya and hibiscus in South America, it presents a unique threat to ornamental and agricultural sectors in south Florida. An area-wide survey for the phytoplasma and potential vectors is recommended.