Plant Science


Publications (766)

Effects of insecticides and repellents on the spread of ‘Candidatus Phytoplasma solani’ under laboratory and field conditions

Citation
Riedle-Bauer, Brader (2023). Journal of Plant Diseases and Protection 130 (5)
Names (1)
Ca. Phytoplasma solani
Subjects
Agronomy and Crop Science Horticulture Plant Science
Abstract
AbstractRecent outbreaks of ‘Candidatus Phytoplasma solani’ resulted in severe losses in potatoes, vegetable crops and grapevines in certain regions of Austria and constituted a major challenge for seed potato production. Therefore, the effects of various insecticides and insect deterrents on pathogen spread were studied both in laboratory and field experiments from 2018 to 2021. In laboratory transmission experiments, field captured Hyalesthes obsoletus were caged on differently treated Catharanthus roseus for five days. The insecticides lambda-cyhalothrin, deltamethrin, esfenvalerate, acetamiprid and chlorpyriphos showed the most rapid impact on insect survival and fully prevented phytoplasma transmission. The particle film forming products kaolin and diatomaceous earth had some effect. A transfer of the promising laboratory results to potato fields, however, was achieved to a limited extent only. Treatments with pyrethroids and acetamiprid every 8–10 days over the flight period of H. obsoletus roughly halved the number of symptomatic plants and tubers in case of moderately susceptible varieties and moderate infection pressure. In the event of susceptible varieties and high disease pressure, treatment effects were hardy discernible. In practical terms, the experiments indicate that insecticide applications alone are not sufficient to mitigate the disease. Spraying of diatomaceous earth and mineral oil did not affect disease incidence in the field.

Alternative Tissue Sampling for Improved Detection of Candidatus Liberibacter asiaticus

Citation
Hajeri et al. (2023). Plants 12 (19)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Ecology Ecology, Evolution, Behavior and Systematics Plant Science
Abstract
Early detection and prompt response are key factors in the eradication of ‘huanglongbing’ (HLB) in California. Currently, qPCR testing of leaf tissue guides the removal of infected trees. However, because of the uneven distribution of ‘Candidatus Liberibacter asiaticus’ (CLas) in an infected tree and asymptomatic infection, selecting the best leaves to sample, from a mature tree with more than 200,000 estimated leaves, is a major hurdle for timely detection. The goal of this study was to address this issue by testing alternative tissues that might improve the CLas detection rate. Using two years of field data, old and young leaves, peduncle bark of fruit, and feeder roots were evaluated for the presence of CLas. Quadrant-peduncle (Q-P) tissue sampling consistently resulted in better CLas detection than any other tissue type. Q-P samples had a 30% higher qPCR positivity rate than quadrant-leaf (Q-L) samples. No significant seasonal patterns were observed. Roots and single peduncles had similar detection rates; both were higher than single leaves or Q-L samples. If symptoms were used to guide sampling, 30% of infected trees would have been missed. Taken together, these results suggest that Q-P tissue sampling is the optimal choice for improved CLas detection under California growing conditions.

A ‘Candidatus Liberibacter solanacearum’ haplotype B-specific family of candidate bacterial effectors

Citation
Levy et al. (2023). Phytopathology®
Names (1)
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter solanacearum’ (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts. Bacterial secreted proteins can play a role in host colonization or the manipulation of the host immune responses; these proteins are called effectors. In this study, we identified six LsoB specific proteins with a conserved secretion motif as well as a conserved N-terminal domain in the mature protein. These proteins had different expression and secretion patterns but a similar subcellular localization in Nicotiana benthamiana leaves suggesting they play different roles regardless of their conserved secretion motif. One of these proteins, CKC_04425, was expressed at high levels in the insect vector and the host plant indicating it could play a role in both the plant and insect hosts, while the others were mainly expressed in the plant. One protein, CKC_05701, was able to efficiently suppress programmed cell death and reactive oxygen species production suggesting it may have a virulence role in LsoB-specific pathogenesis.

An endolysin gene from Candidatus Liberibacter asiaticus confers dual resistance to huanglongbing and citrus canker

Citation
Xu et al. (2023). Horticulture Research 10 (9)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Biochemistry Biotechnology Genetics Horticulture Plant Science
Abstract
Abstract The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacteria and Xcc, according to inhibition zone analyses. The two genes, driven by a strong promoter from Cauliflower mosaic virus, 35S, were integrated into Carrizo citrange via Agrobacterium-mediated transformation. More than 2 years of greenhouse testing indicated that LasLYS2 provided substantial and long-lasting resistance to HLB, allowing transgenic plants to retain low CaLas titers and no obvious symptoms while also clearing CaLas from infected plants in the long term. LasLYS2 transgenic plants with improved HLB resistance also showed resistance to Xcc, indicating that LasLYS2 had dual resistance to HLB and citrus canker. A microbiome study of transgenic plants revealed that the endolysins repressed Xanthomonadaceae and Rhizobiaceae populations in roots while increasing Burkholderiaceae and Rhodanobacteraceae populations, which might boost the citrus defense response, according to transcriptome analysis. We also found that Lyz domain 2 is the key bactericidal motif of LasLYS1 and LasLYS2. Four endolysins with potential resistance to HLB and citrus canker were found based on the structures of LasLYS1 and LasLYS2. Overall, the work shed light on the mechanisms of resistance of CaLas-derived endolysins, providing insights for designing endolysins to develop broad-spectrum disease resistance in citrus.