Infectious Diseases


Publications (245)

Candidatus Dirofilaria Hongkongensis Infections in Humans During 2005 to 2020, in Kerala, India

Citation
Kumar et al. (2021). The American Journal of Tropical Medicine and Hygiene 104 (6)
Names (1)
Ca. Dirofilaria
Subjects
Infectious Diseases Parasitology Virology
Abstract
Abstract.We tried to determine the epidemiology and species of human dirofilariasis observed at two tertiary care hospitals in Kerala. We searched the hospital database to identify cases of dirofilariosis from January 2005 to March 2020. Along with human isolates, one dog Dirofilaria isolate was also subjected to PCR and sequencing of pan filarial primers cytochrome oxidase subunits 1 and 12S rDNA. We documented 78 cases of human dirofilariosis. The orbit, eyelid, and conjunctiva were the most commonly affected sites. Molecular characterization identified one dog and five human isolates as Candidatus Dirofilaria Hongkongensis. A rare case of subconjunctival infestation by B. malayi was also documented. Human dirofilariosis is a public health problem in the state of Kerala in India, and it is mostly caused by Candidatus Dirofilaria Hongkongensis. We propose that all diroifilaria isolates are subjected to sequencing for identification.

PBP4 Is Likely Involved in Cell Division of the Longitudinally Dividing Bacterium Candidatus Thiosymbion Oneisti

Citation
Wang et al. (2021). Antibiotics 10 (3)
Names (2)
Ca. Thiosymbion oneisti Ca. Thiosymbion
Subjects
Biochemistry General Pharmacology, Toxicology and Pharmaceutics Infectious Diseases Microbiology Microbiology (medical) Pharmacology (medical)
Abstract
Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-linkage of 67% but relatively short glycan chains with an average length of 12 disaccharides. Curiously, it has only two predicted endopeptidases, MepA and PBP4. Cellular localization of symbiont PBP4 by fluorescently labeled antibodies reveals its polar localization and its accumulation at the constriction sites, suggesting that PBP4 is involved in PG biosynthesis during septum formation. Isolated symbiont PBP4 protein shows a different selectivity for β-lactams compared to its homologue from E. coli. Bocillin-FL binding by PBP4 is activated by some β-lactams, suggesting the presence of an allosteric binding site. Overall, our data point to a role of PBP4 in PG cleavage during the longitudinal cell division and to a PG that might have been adapted to the symbiotic lifestyle.

Rickettsia spp. in rodent-attached ticks in Estonia and first evidence of spotted fever group Rickettsia species Candidatus Rickettsia uralica in Europe

Citation
Vikentjeva et al. (2021). Parasites & Vectors 14 (1)
Names (1)
Ca. Rickettsia uralica
Subjects
Infectious Diseases Parasitology
Abstract
Abstract Background Rickettsia spp. are human pathogens that cause a number of diseases and are transmitted by arthropods, such as ixodid ticks. Estonia is one of few regions where the distribution area of two medically important tick species, Ixodes persulcatus and I. ricinus, overlaps. The nidicolous rodent-associated Ixodestrianguliceps has also recently been shown to be present in Estonia. Although no data are available on human disease(s) caused by tick-borne Rickettsia spp. in Estonia, the presence of three Rickettsia species in non-nidicolous ticks has been previously reported. The aim of this study was to detect, identify and partially characterize Rickettsia species in nidicolous and non-nidicolous ticks attached to rodents in Estonia. Results Larvae and nymphs of I.ricinus (n = 1004), I. persulcatus (n = 75) and I.trianguliceps (n = 117), all removed from rodents and shrews caught in different parts of Estonia, were studied for the presence of Rickettsia spp. by nested PCR. Ticks were collected from 314 small animals of five species [Myodes glareolus (bank voles), Apodemus flavicollis (yellow necked mice), A.agrarius (striped field mice), Microtus subterranius (pine voles) and Sorex araneus (common shrews)]. Rickettsial DNA was detected in 8.7% (103/1186) of the studied ticks. In addition to identifying R.helvetica, which had been previously found in questing ticks, we report here the first time that the recently described I.trianguliceps-associated Candidatus Rickettsia uralica has been identified west of the Ural Mountains. Graphical Abstract

Metagenomic Analysis Reveals the Mechanism for the Observed Increase in Antibacterial Activity of Penicillin against Uncultured Bacteria Candidatus Liberibacter asiaticus Relative to Oxytetracycline in Planta

Citation
Yang et al. (2020). Antibiotics 9 (12)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Biochemistry General Pharmacology, Toxicology and Pharmaceutics Infectious Diseases Microbiology Microbiology (medical) Pharmacology (medical)
Abstract
Citrus huanglongbing (HLB) is a devastating disease for the citrus industry. The previous studies demonstrated that oxytetracycline and penicillin are effective antibiotics against Candidatus Liberibacter asiaticus (CLas). However, since CLas is uncultured, the mechanisms of action of antibiotics against CLas are still unclear. It was recently reported that the endophytic microbial communities are associated with the progression of citrus HLB after oxytetracycline and penicillin treatment. Therefore, we hypothesize that penicillin has greater antibacterial activity against CLas than oxytetracycline, which may be associated with the alteration of the structure and function of endophytic microbial communities in HLB-affected citrus in response to these antibiotics. To test this hypothesis, the microbiome of HLB-affected citrus leaves treated with these two antibiotics was analyzed using a metagenomic method. Our results indicate that the microbial structure and function in HLB-affected citrus were altered by these two antibiotics. The relative abundance of beneficial bacterial species, including Streptomyces avermitilis and Bradyrhizobium, was higher in penicillin-treated plants compared to those treated with oxytetracycline, and the relative abundance of the bacterial species (such as Propionibacterium acnes and Synechocystis sp PCC 6803) associated with CLas survival was lower for penicillin-treated plants compared to oxytetracycline-treated plants. These results indicate that penicillin has greater antibacterial activity against CLas. Based on the metagenomic analysis, this study elucidated the mechanism for the observed increase in antibacterial activity of penicillin against CLas. The data presented here are not only invaluable for developing eco-friendly and effective biocontrol strategies to combat citrus HLB, but also provide a method for revealing mechanism of antimicrobial against uncultured bacteria in host.

A Case of Persistent Diarrhea in a Man with the Molecular Detection of Various Campylobacter species and the First Isolation of candidatus Campylobacter infans

Citation
Flipse et al. (2020). Pathogens 9 (12)
Subjects
General Immunology and Microbiology Immunology and Allergy Infectious Diseases Microbiology (medical) Molecular Biology
Abstract
A man with a well-controlled HIV infection, previously diagnosed with lymphogranuloma venereum and treated for Hodgkin’s lymphoma, was suffering from chronic diarrhea. He travelled to Indonesia in the month prior to the start of complaints. Over a 15-month period, sequences related to Campylobactertroglodytis/upsaliensis, C. pinnepediorum/mucosalis/concisus and C. hominis were detected by 16S rRNA qPCR-based assays in various stool samples and in a colon biopsy. Culture revealed the first isolation of “candidatus Campylobacter infans”, a species identified recently by molecular methods only. The patient was treated with azithromycin, ciprofloxacin and tetracycline. To identify potential continuous exposure of the patient to Campylobacter, stool samples of the partner and the cat of the patient were analyzed and C. pinnepediorum/mucosalis/concisus and C. helveticus, respectively, were detected. The diversity in detected species in this immunocompromised patient with a lack of repeatedly consistent findings resulted in the conclusion that not any of the Campylobacter species was the primary cause of the clinical condition. This study shows the challenges in detection and interpretation of diagnostic results regarding Campylobacter.

Multilocus Genotyping Reveals New Molecular Markers for Differentiating Distinct Genetic Lineages among “Candidatus Phytoplasma Solani” Strains Associated with Grapevine Bois Noir

Citation
Passera et al. (2020). Pathogens 9 (11)
Names (2)
Ca. Phytoplasma solani Ca. Phytoplasma
Subjects
General Immunology and Microbiology Immunology and Allergy Infectious Diseases Microbiology (medical) Molecular Biology
Abstract
Grapevine Bois noir (BN) is associated with infection by “Candidatus Phytoplasma solani” (CaPsol). In this study, an array of CaPsol strains was identified from 142 symptomatic grapevines in vineyards of northern, central, and southern Italy and North Macedonia. Molecular typing of the CaPsol strains was carried out by analysis of genes encoding 16S rRNA and translation elongation factor EF-Tu, as well as eight other previously uncharacterized genomic fragments. Strains of tuf-type a and b were found to be differentially distributed in the examined geographic regions in correlation with the prevalence of nettle and bindweed. Two sequence variants were identified in each of the four genomic segments harboring hlyC, cbiQ-glyA, trxA-truB-rsuA, and rplS-tyrS-csdB, respectively. Fifteen CaPsol lineages were identified based on distinct combinations of sequence variations within these genetic loci. Each CaPsol lineage exhibited a unique collective restriction fragment length polymorphism (RFLP) pattern and differed from each other in geographic distribution, probably in relation to the diverse ecological complexity of vineyards and their surroundings. This RFLP-based typing method could be a useful tool for investigating the ecology of CaPsol and the epidemiology of its associated diseases. Phylogenetic analyses highlighted that the sequence variants of the gene hlyC, which encodes a hemolysin III-like protein, separated into two clusters consistent with the separation of two distinct lineages on the basis of tufB gene sequences. Alignments of deduced full protein sequences of elongation factor-Tu (tufB gene) and hemolysin III-like protein (hlyC gene) revealed the presence of critical amino acid substitutions distinguishing CaPsol strains of tuf-type a and b. Findings from the present study provide new insights into the genetic diversity and ecology of CaPsol populations in vineyards.