Infectious Diseases


Publications (209)

Genetic Diversity of “ <i>Candidatus</i> Liberibacter asiaticus” Based on Four Hypervariable Genomic Regions in China

Citation
Gao et al. (2022). Microbiology Spectrum 10 (6)
Names
Ca. Liberibacter asiaticus
Subjects
Cell Biology Ecology General Immunology and Microbiology Genetics Infectious Diseases Microbiology (medical) Physiology
Abstract
The hypervariable genomic regions derived from 35 published C Las genomes were used to decipher the genetic diversity of C Las strains and identify 10 new strains with high variations in prophage regions. Characterizing these variations in the C Las bacteria might provide insight into their evolution and adaptation to host plants and insects in China.

Phylogenetic relationship between the endosymbiont “Candidatus Riesia pediculicola” and its human louse host

Citation
Hammoud et al. (2022). Parasites &amp; Vectors 15 (1)
Names
Ca. Riesia pediculicola
Subjects
Infectious Diseases Parasitology
Abstract
Abstract Background The human louse (Pediculus humanus) is a haematophagous ectoparasite that is intimately related to its host. It has been of great public health concern throughout human history. This louse has been classified into six divergent mitochondrial clades (A, D, B, F, C and E). As with all haematophagous lice, P. humanus directly depends on the presence of a bacterial symbiont, known as “Candidatus Riesia pediculicola”, to complement their unbalanced diet. In this study, we evaluated the codivergence of human lice around the world and their endosymbiotic bacteria. Using molecular approaches, we targeted lice mitochondrial genes from the six diverged clades and Candidatus Riesia pediculicola housekeeping genes. Methods The mitochondrial cytochrome b gene (cytb) of lice was selected for molecular analysis, with the aim to identify louse clade. In parallel, we developed four PCR primer pairs targeting three housekeeping genes of Candidatus Riesia pediculicola: ftsZ, groEL and two regions of the rpoB gene (rpoB-1 and rpoB-2). Results The endosymbiont phylogeny perfectly mirrored the host insect phylogeny using the ftsZ and rpoB-2 genes, in addition to showing a significant co-phylogenetic congruence, suggesting a strict vertical transmission and a host–symbiont co-speciation following the evolutionary course of the human louse. Conclusion Our results unequivocally indicate that louse endosymbionts have experienced a similar co-evolutionary history and that the human louse clade can be determined by their endosymbiotic bacteria. Graphical Abstract

“Candidatus Campylobacter infans” detection is not associated with diarrhea in children under the age of 2 in Peru

Citation
Garcia Bardales et al. (2022). PLOS Neglected Tropical Diseases 16 (10)
Names
Ca. Campylobacter infans
Subjects
Infectious Diseases Public Health, Environmental and Occupational Health
Abstract
A working hypothesis is that less common species of Campylobacter (other than C. jejuni and C. coli) play a role in enteric disease among children in low resource settings and explain the gap between the detection of Campylobacter using culture and culture independent methods. “Candidatus Campylobacter infans” (C. infans), was recently detected in stool samples from children and hypothesized to play a role in Campylobacter epidemiology in low- and middle-income countries (LMIC). This study determined the prevalence of C. infans in symptomatic and asymptomatic stool samples from children living in Iquitos, Peru. Stool samples from 215 children with diarrhea and 50 stool samples from children without diarrhea under the age of two were evaluated using a multiplex qPCR assay to detect Campylobacter spp. (16S rRNA), Campylobacter jejuni / Campylobacter coli (cadF gene), C. infans (lpxA), and Shigella spp. (ipaH). C. infans was detected in 7.9% (17/215) symptomatic samples and 4.0% (2/50) asymptomatic samples. The association between diarrhea and the presence of these targets was evaluated using univariate logistic regressions. C. infans was not associated with diarrhea. Fifty-one percent (75/146) of Campylobacter positive fecal samples were negative for C. jejuni, C. coli, and C. infans via qPCR. Shotgun metagenomics confirmed the presence of C. infans among 13 out of 14 positive C. infans positive stool samples. C infans explained only 20.7% of the diagnostic gap in stools from children with diarrhea and 16.7% of the gap in children without diarrhea. We posit that poor cadF primer performance better explains the observed gap than the prevalence of atypical non-C. jejuni/coli species.

Detection and Multigene Typing of ‘Candidatus Phytoplasma solani’-Related Strains Infecting Tomato and Potato Plants in Different Regions of Turkey

Citation
Çağlar, Şimşek (2022). Pathogens 11 (9)
Names
Ca. Phytoplasma solani
Subjects
General Immunology and Microbiology Immunology and Allergy Infectious Diseases Microbiology (medical) Molecular Biology
Abstract
‘Candidatus Phytoplasma solani’ (‘Ca. P. solani’) is a crop pathogen that is a member of the 16SrXII-A ribosomal subgroup. It is also known as stolbur phytoplasma and causes yield losses in several important crops, especially in Solanaceous crops. Different strains of the pathogen are regularly reported all over the world, particularly in the Mediterranean region. In this study, the determination of genetic diversity for the pathogen infecting tomatoes and potatoes was carried out by using multilocus sequence typing analysis for the Tuf, SecY, and Vmp1 genes to gain insight into the epidemiology of ‘Ca. P. solani’ in Turkey. Genetic diversity of the phytoplasmas was investigated by sequence-based phylogenetic analyses and in silico RFLP analysis of related genes. It was determined that all ‘Ca. P. solani’-related strains infecting tomatoes and potatoes were tuf-b, which is linked to field bindweed (Convolvulus arvensis L.). Tomato or potato-infecting ‘Ca. P. solani’-related strains showed similarities with each other; however, the isolates collected from different plants showed genetic differences in terms of the SecY gene. This study indicates that the highest genetic variability of collected samples was found in the Vmp1 gene. RsaI-RFLP analysis of TYPH10F/R amplicons showed that potato-infecting ‘Ca. P. solani’-related strains were found to be similar to some existing V types. However, the V-type of tomato-infecting isolates is not similar to any previously reported V-type. The results indicate that there could be an important genetic diversity of ‘Ca. P. solani’-related phytoplasmas in Turkey. This could indicate various ways in which the pathogen has adapted to the two host plants as a consequence of the various Vmp1 gene rearrangements seen in these two plant hosts. Obtained results also indicate that the epidemiology of ‘Ca. P. solani’-related phytoplasmas in the tomato and potato agroecosystem may be better understood with the use of molecular data on the complex of vmp-types.

Mutual Exclusion of <i>Methanobrevibacter</i> Species in the Human Gut Microbiota Facilitates Directed Cultivation of a <i>Candidatus</i> Methanobrevibacter Intestini Representative

Citation
Low et al. (2022). Microbiology Spectrum 10 (4)
Names
Methanobrevibacter
Subjects
Cell Biology Ecology General Immunology and Microbiology Genetics Infectious Diseases Microbiology (medical) Physiology
Abstract
Methanogens are important hydrogen consumers in the gut and are associated with differing host health. Here, we determine the prevalence and abundance of archaeal species in the guts of a multi-ethnic cohort of healthy Singapore residents.