Infectious Diseases


Publications (203)

Phylogenetic relationship between the endosymbiont “Candidatus Riesia pediculicola” and its human louse host

Citation
Hammoud et al. (2022). Parasites & Vectors 15 (1)
Names
Ca. Riesia pediculicola
Subjects
Infectious Diseases Parasitology
Abstract
Abstract Background The human louse (Pediculus humanus) is a haematophagous ectoparasite that is intimately related to its host. It has been of great public health concern throughout human history. This louse has been classified into six divergent mitochondrial clades (A, D, B, F, C and E). As with all haematophagous lice, P. humanus directly depends on the presence of a bacterial symbiont, known as “Candidatus Riesia pediculicola”, to complement their unbalanced diet. In this study, we evaluated the codivergence of human lice around the world and their endosymbiotic bacteria. Using molecular approaches, we targeted lice mitochondrial genes from the six diverged clades and Candidatus Riesia pediculicola housekeeping genes. Methods The mitochondrial cytochrome b gene (cytb) of lice was selected for molecular analysis, with the aim to identify louse clade. In parallel, we developed four PCR primer pairs targeting three housekeeping genes of Candidatus Riesia pediculicola: ftsZ, groEL and two regions of the rpoB gene (rpoB-1 and rpoB-2). Results The endosymbiont phylogeny perfectly mirrored the host insect phylogeny using the ftsZ and rpoB-2 genes, in addition to showing a significant co-phylogenetic congruence, suggesting a strict vertical transmission and a host–symbiont co-speciation following the evolutionary course of the human louse. Conclusion Our results unequivocally indicate that louse endosymbionts have experienced a similar co-evolutionary history and that the human louse clade can be determined by their endosymbiotic bacteria. Graphical Abstract

Detection and Multigene Typing of ‘Candidatus Phytoplasma solani’-Related Strains Infecting Tomato and Potato Plants in Different Regions of Turkey

Citation
Çağlar, Şimşek (2022). Pathogens 11 (9)
Names
Ca. Phytoplasma solani
Subjects
General Immunology and Microbiology Immunology and Allergy Infectious Diseases Microbiology (medical) Molecular Biology
Abstract
‘Candidatus Phytoplasma solani’ (‘Ca. P. solani’) is a crop pathogen that is a member of the 16SrXII-A ribosomal subgroup. It is also known as stolbur phytoplasma and causes yield losses in several important crops, especially in Solanaceous crops. Different strains of the pathogen are regularly reported all over the world, particularly in the Mediterranean region. In this study, the determination of genetic diversity for the pathogen infecting tomatoes and potatoes was carried out by using multilocus sequence typing analysis for the Tuf, SecY, and Vmp1 genes to gain insight into the epidemiology of ‘Ca. P. solani’ in Turkey. Genetic diversity of the phytoplasmas was investigated by sequence-based phylogenetic analyses and in silico RFLP analysis of related genes. It was determined that all ‘Ca. P. solani’-related strains infecting tomatoes and potatoes were tuf-b, which is linked to field bindweed (Convolvulus arvensis L.). Tomato or potato-infecting ‘Ca. P. solani’-related strains showed similarities with each other; however, the isolates collected from different plants showed genetic differences in terms of the SecY gene. This study indicates that the highest genetic variability of collected samples was found in the Vmp1 gene. RsaI-RFLP analysis of TYPH10F/R amplicons showed that potato-infecting ‘Ca. P. solani’-related strains were found to be similar to some existing V types. However, the V-type of tomato-infecting isolates is not similar to any previously reported V-type. The results indicate that there could be an important genetic diversity of ‘Ca. P. solani’-related phytoplasmas in Turkey. This could indicate various ways in which the pathogen has adapted to the two host plants as a consequence of the various Vmp1 gene rearrangements seen in these two plant hosts. Obtained results also indicate that the epidemiology of ‘Ca. P. solani’-related phytoplasmas in the tomato and potato agroecosystem may be better understood with the use of molecular data on the complex of vmp-types.

Mutual Exclusion of <i>Methanobrevibacter</i> Species in the Human Gut Microbiota Facilitates Directed Cultivation of a <i>Candidatus</i> Methanobrevibacter Intestini Representative

Citation
Low et al. (2022). Microbiology Spectrum 10 (4)
Names
Methanobrevibacter
Subjects
Cell Biology Ecology General Immunology and Microbiology Genetics Infectious Diseases Microbiology (medical) Physiology
Abstract
Methanogens are important hydrogen consumers in the gut and are associated with differing host health. Here, we determine the prevalence and abundance of archaeal species in the guts of a multi-ethnic cohort of healthy Singapore residents.

Effect of the Symbiosis with Mycoplasma hominis and Candidatus Mycoplasma Girerdii on Trichomonas vaginalis Metronidazole Susceptibility

Citation
Margarita et al. (2022). Antibiotics 11 (6)
Names
Ca. Mycoplasma girerdii
Subjects
Biochemistry General Pharmacology, Toxicology and Pharmaceutics Infectious Diseases Microbiology Microbiology (medical) Pharmacology (medical)
Abstract
Trichomoniasis, the most common non-viral sexually transmitted infection worldwide, is caused by the protozoon Trichomonas vaginalis. The 5- nitroimidazole drugs, of which metronidazole is the most prescribed, are the only effective drugs to treat trichomoniasis. Resistance against metronidazole is increasingly reported among T. vaginalis isolates. T. vaginalis can establish an endosymbiosis with two Mycoplasma species, Mycoplasma hominis and Candidatus Mycoplasma girerdii, whose presence has been demonstrated to influence several aspects of the protozoan pathobiology. The role of M. hominis in T. vaginalis resistance to metronidazole is controversial, while the influence of Ca. M. girerdii has never been investigated. In this work, we investigate the possible correlation between the presence of Ca. M. girerdii and/or M. hominis and the in vitro drug susceptibility in a large group of T. vaginalis isolated in Italy and in Vietnam. We also evaluated, via RNA-seq analysis, the expression of protozoan genes involved in metronidazole resistance in a set of syngenic T. vaginalis strains, differing only for the presence/absence of the two Mycoplasmas. Our results show that the presence of M. hominis significantly increases the sensitivity to metronidazole in T. vaginalis and affects gene expression. On the contrary, the symbiosis with Candidatus Mycoplasma girerdii seems to have no effect on metronidazole resistance in T. vaginalis.