Search results
79


Hiding in plain sight: a widespread native perennial harbors diverse haplotypes of 'Candidatus Liberibacter solanacearum' and its potato psyllid vector

Citation
Kenney et al. (2024). Phytopathology®
Names
“Liberibacter solanacearum”
Abstract
The unculturable bacterium ‘Candidatus Liberibacter solanacearum’ (CLso) is responsible for a growing number of emerging crop diseases. However, we know little about the diversity and ecology of CLso and its psyllid vectors outside of agricultural systems, which limits our ability to manage crop disease and understand the impacts this pathogen may have on wild plants in natural ecosystems. In North America, CLso is transmitted to crops by the native potato psyllid (Bactericera cockerelli). But

Dynamics of Candidatus Liberibacter asiaticus growth, concentrations of reactive oxygen species, and ion leakage in HLB-positive sweet orange

Citation
Pandey et al. (2024). Phytopathology®
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (CLas) is the most devastating citrus disease worldwide. CLas induces systemic and chronic reactive oxygen species (ROS) production, which was suggested to be a primary cause of cell death in phloem tissues and subsequent HLB symptoms. Mitigating oxidative stress caused by CLas using horticultural approaches has been suggested to a useful strategy to reduce HLB damages. To provide the information regarding the application ti

Identification and characterization of polyamine metabolism in citrus in response to ‘Candidatus Liberibacter asiaticus’ infection

Citation
Qifang et al. (2024). Phytopathology®
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing, one of the most devastating citrus diseases, is caused by Candidatus Liberibacter asiaticus (CLas). Polyamines are aliphatic nitrogen-containing compounds that play important roles in disease resistance. However, the role of polyamine metabolism in the tolerance of citrus to infection with CLas have not been extensively studied. We used HPLC and UPLC-Q/TOF-MS to detect the contents of nine polyamine metabolism-related compounds (PMRCs) in six citrus cultivars with varying

A ‘Candidatus Liberibacter solanacearum’ Haplotype B-Specific Family of Candidate Bacterial Effectors

Citation
Levy et al. (2023). Phytopathology® 113 (9)
Names
“Liberibacter solanacearum”
Abstract
‘ Candidatus Liberibacter solanacearum’ (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts. Bacterial secreted proteins can play a role in host colonization or the manip

A Perspective on Current Therapeutic Molecule Screening Methods Against ‘Candidatus Liberibacter asiaticus’, the Presumed Causative Agent of Citrus Huanglongbing

Citation
Kennedy et al. (2023). Phytopathology® 113 (7)
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB), referred to as citrus greening disease, is a bacterial disease impacting citrus production worldwide and is fatal to young trees and mature trees of certain varieties. In some areas, the disease is devastating the citrus industry. A successful solution to HLB will be measured in economics: citrus growers need treatments that improve tree health, fruit production, and most importantly, economic yield. The profitability of citrus groves is the ultimate metric that truly matte

Microscopic and Transcriptomic Analyses of Early Events Triggered by ‘Candidatus Liberibacter asiaticus’ in Young Flushes of Huanglongbing-Positive Citrus Trees

Citation
Pandey et al. (2023). Phytopathology® 113 (6)
Names
Ca. Liberibacter asiaticus
Abstract
‘ Candidatus Liberibacter asiaticus’ (CLas) is associated with the devastating citrus disease Huanglongbing (HLB). Young flushes are the center of the HLB pathosystem due to their roles in the psyllid life cycle and in the acquisition and transmission of CLas. However, the early events of CLas infection and how CLas modulates young flush physiology remain poorly understood. Here, transmission electron microscopy analysis showed that the mean diameter of the sieve pores decreased in young leaves

Assessing Carrot Accessions Susceptibility to the Bacterial Pathogen ‘Candidatus Liberibacter solanacearum’ and Its Associated Symptoms

Citation
Hamershlak et al. (2023). Phytopathology® 113 (5)
Names
“Liberibacter solanacearum”
Abstract
‘ Candidatus Liberibacter solanacearum’ is an insect-transmitted bacterium associated with several plant diseases. In the Mediterranean Basin, ‘ Ca. L. solanacearum’ haplotype D is vectored by Bactericera trigonica and can severely infect carrot plants leading to abnormal growth phenotypes and significant yield losses. Insecticide applications are insufficient to suppress disease spread and damage, and additional means for disease control are needed. In the current study, we evaluated the resis

Strain Tracking of ‘Candidatus Liberibacter asiaticus’, the Citrus Greening Pathogen, by High-Resolution Microbiome Analysis of Asian Citrus Psyllids

Citation
Higgins et al. (2022). Phytopathology® 112 (11)
Names
Ca. Liberibacter asiaticus
Abstract
The Asian citrus psyllid, Diaphorina citri, is an invasive insect and a vector of ‘ Candidatus Liberibacter asiaticus’ ( CLas), a bacterium whose growth in Citrus species results in huanglongbing (HLB), also known as citrus greening disease. Methods to enrich and sequence CLas from D. citri often rely on biased genome amplification and nevertheless contain significant quantities of host DNA. To overcome these hurdles, we developed a simple pretreatment DNase and filtration (PDF) protocol to rem

Titer and Distribution of ‘Candidatus Phytoplasma pruni’ in Prunus avium

Citation
Wright et al. (2022). Phytopathology® 112 (7)
Names
Ca. Phytoplasma pruni
Abstract
‘Candidatus Phytoplasma pruni’ infection in cherries causes small, misshapen fruit with poor color and taste, rendering the fruit unmarketable. However, this is a disease with a long development cycle and a scattered, nonuniform symptom distribution in the early stages. To better understand the biology as well as the relationship between pathogen titer and disease expression, we carried out seasonal, spatial, and temporal examinations of ‘Ca. P. pruni’ titer and distribution in infected orchard

Effect of Plant Age, Temperature, and Vector Load on ‘Candidatus Liberibacter solanacearum’ in Planta Titer and Shoot Proliferation Symptoms in Carrot

Citation
Keshet-Sitton et al. (2022). Phytopathology® 112 (1)
Names
“Liberibacter solanacearum” Ca. Phytoplasma
Abstract
A decade ago, shoot proliferation symptoms (i.e., witches’ broom) in carrots were believed to be the cause of ‘Candidatus Phytoplasma’ and Spiroplasma infection, yet in recent years this association appeared to have weakened, and a closer association was found with the yet-unculturable, psyllid-transmitted Gram-negative bacterium ‘Candidatus Liberibacter solanacearum’. In Israel, carrots are grown throughout the year, yet shoot proliferation symptoms tend to appear only in mature plants and mos