Search results (237)


Acquisition and Transmission of ‘Candidatus Liberibacter solanacearum’ Differs Among Wolbachia-Infected and -Uninfected Haplotypes of Bactericera cockerelli

Citation
Cooper et al. (2023). Plant Disease 107 (8)
Names (1)
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter solanacearum’ (Lso) causes disease symptoms and economic losses in potato, tomato, and other solanaceous crops in North America. Lso is transmitted to plants by the potato psyllid, Bactericera cockerelli, which occurs as distinct haplotypes named western, central, and northwestern that differ in the presence or absence of the bacterial endosymbiont, Wolbachia. Previous work showed that all three vector haplotypes can transmit Lso, but it was not clear whether acquisition and transmission rates of Lso were equal among the haplotypes. The goal of our study was to compare Lso infection rates among psyllids of the western, central, and northwestern haplotypes. Using data collected from several years of periodic testing of Lso infection of laboratory-reared potato psyllid colonies, we showed that psyllids of the western and central haplotypes are more likely to harbor Lso than are psyllids of the northwestern haplotype. We then used greenhouse assays to demonstrate that psyllids of the northwestern haplotype are less likely to acquire and transmit Lso than those of the western haplotype. Lso infection rates corresponded with Wolbachia infection among the three psyllid haplotypes. The Wolbachia-infected central and western haplotypes were more likely to harbor and transmit Lso than the Wolbachia-free northwestern haplotype. Results demonstrate that potato psyllids of the western and central haplotypes pose a greater risk for spread of Lso in crops and suggest a pattern between infection with Lso and Wolbachia in potato psyllid.

New assays for rapid detection of beet leafhopper-associated plant pathogens, Candidatus Phytoplasma trifolii, Beet curly top virus and Spiroplasma citri

Citation
Swisher Grimm et al. (2023). Plant Disease
Names (1)
Ca. Phytoplasma trifolii
Subjects
Agronomy and Crop Science Plant Science
Abstract
The beet leafhopper, Circulifer tenellus, is an important pest of agricultural crops in the United States, where it transmits Beet curly top virus, Beet leafhopper-transmitted virescence agent phytoplasma and Spiroplasma citri to numerous crops, affecting yield and quality. Each of these pathogens have been linked to serious disease outbreaks within Washington State in the past century. To mitigate the risk of disease, growers target the beet leafhopper in their insect pest management programs. Knowledge of pathogen prevalence in beet leafhopper populations could help growers make better management decisions, but timely diagnostics is required. Four new assays were developed for the rapid detection of the beet leafhopper-associated pathogens. These include two assays that detect Beet leafhopper transmitted virescence agent (a PCR and a real-time PCR SYBR green assay), a duplex PCR assay that simultaneously detects Beet curly top virus and Spiroplasma citri, and a multiplex real-time PCR assay for the simultaneous detection of all three pathogens. The screening of dilution series generated from plant total nucleic acid extracts with these new assays typically led to detection at levels 10- to 100-fold more sensitive than the conventional PCR assays currently used. These new tools will allow the rapid detection of beet leafhopper-associated pathogens in both plant and insect specimens and will have the potential to be used in diagnostic laboratories seeking to disseminate fast, accurate results to growers for implementation in their insect pest monitoring programs.

First report of ‘Candidatus Phytoplasma asteris’ associated with witches'-broom and plexus bud disease of Cerasus serrula in China

Citation
Chen et al. (2023). Plant Disease
Names (1)
Ca. Phytoplasma asteris
Subjects
Agronomy and Crop Science Plant Science
Abstract
Cherry blossoms (Cerasus serrula) are native to the temperate zone around the Himalayas in the northern hemisphere, mainly distributed in the west and southwest of China, including Yunnan, Sichuan and Tibet. Cherry has high ornamental, edible and medicinal value. In August 2022, we observed that Cherry trees exhibited witches' broom and plexus bud in Kunming City, Yunan Province, China. The symptoms consisted of many small branches with little leaves at the top of branches, stipule lobation, and clustered adventitious buds that are tumor-like on the branches that usually cannot sprout normally. As disease intensity increased, the branches dried up from the top to the bottom till the death of the whole plant. We named this disease C. serrula witches’ broom disease (CsWB). We found CsWB in the areas of Panlong, Guandu, Xishan Districts in Kunming, where more than 17% of the plants we surveyed were infected. We collected 60 samples from across the three districts. These included 15 symptomatic and 5 asymptomatic plants per district. The lateral stem tissues were observed under a scanning electron microscope (Hitachi S-3000N). The nearly spherical bodies were found in the phloem cells of symptomatic plants. Total DNA extraction was conducted from 0.1 g tissue using the CTAB method (Porebski et al. 1997), ddH2O was used as the negative control, and Dodonaea viscose plants with witches’ broom symptoms were used as the positive control. The nested PCR was used to amplify the 16S rRNA gene (Lee et al. 1993; Schneider et al. 1993) and PCR amplicon of 1.2 kb were amplified (GenBank accessions: OQ408098; OQ408099; OQ408100). The direct PCR specific to the ribosomal protein (rp) gene yielded amplicons of approximately 1.2 kb with primer pair rp(I)F1A and rp(I)R1A (Lee et a. 2003) (GenBank accessions: OQ410969; OQ410970; OQ410971). The fragment from 33 symptomatic samples was consistent with the positive control, and absent for asymptomatic samples, suggesting an association of phytoplasma with the disease. A BLAST analysis of the 16S rRNA sequences of CsWB phytoplasma showed that it has a 99.76% similarity with Trema laevigata witches' broom phytoplasma (GenBank accession MG755412). The rp sequence shared 99.75% identity with Cinnamomum camphora witches' broom phytoplasma (GenBank accession OP649594). An analysis with iPhyClassifier showed that the virtual RFLP pattern derived from the 16S rDNA sequence shares 99.3% similarity with that of the 'Ca. Phytoplasma asteris' reference strain (GenBank accession: M30790), and the virtual RFLP pattern derived from the fragment is identical (similarity coefficient 1.00) to the reference pattern of 16Sr group I, subgroup B (GenBank accession: AP006628). Thus, CsWB phytoplasma is identified as ‘Ca. Phytoplasma asteris’-related strain belonging to sub-group 16SrI-B. The phylogenetic tree was constructed based on 16S rRNA gene and rp gene sequences by using MEGA version 6.0 (Tamura et al. 2013) with neighbor-joining (NJ) method and bootstrap support was estimated with 1000 replicates. The result indicated that the CsWB phytoplasma formed a subclade in 16SrI-B and rpI-B respectively. In addition, the clean 1-year-old C. serrula were tested positive for the phytoplasma using the nested PCR 30 days after being grafted with naturally infected twigs with CsWB symptoms. To the best of our knowledge, Cherry blossoms is a new host of ‘Ca. Phytoplasma asteris’-related strains in China. The newly emerged disease is a threat to the ornamental value of cherry blossoms and the production of wood quality.