Search results (74)


Microscopic and transcriptomic analyses of early events triggered by Candidatus Liberibacter asiaticus in young flushes of HLB-positive citrus trees

Citation
Pandey et al. (2022). Phytopathology®
Names
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
Candidatus Liberibacter asiaticus (CLas) causes the devastating citrus disease Huanglongbing (HLB). Young flushes are the center of the HLB pathosystem due to their roles in the psyllid life cycle and in the acquisition and transmission of CLas. However, the early events of CLas infection and how CLas modulates young flush physiology remain poorly understood. Here, transmission electron microscopy (TEM) analysis showed the mean diameter of the sieve pores decreased in young leaves of HLB-positive trees after CLas infection, consistent with CLas-triggered callose deposition. RNA-Seq-based global expression analysis of young leaves of HLB-positive sweet orange with (CLas-Pos) and without (CLas-Neg) detectable CLas demonstrated a significant impact on gene expression in young leaves, including on the expression of genes involved in host immunity, stress response, and plant hormone biosynthesis and signaling. CLas-Pos and CLas-Neg expression data displayed distinct patterns. The number of upregulated genes was higher than that of the downregulated genes in CLas-Pos for the following categories: plant-pathogen interactions, glutathione metabolism, peroxisome, and calcium signaling that are commonly associated with pathogen infections compared to healthy control. On the contrary, the number of upregulated genes was lower than that of the downregulated genes in CLas-Neg for genes involved in plant-pathogen interactions and peroxisome. Additionally, qRT-PCR based expression analysis temporally visualized the induced expression of companion cell specific genes, phloem protein 2 (PP2) genes, and sucrose transport genes in young flush triggered by CLas. This study advances our understanding of early events during CLas infection of citrus young flushes.

Assessing carrot accessions susceptibility to the bacterial pathogen ‘Candidatus Liberibacter solanacearum’ and its associated symptoms

Citation
Hamershlak et al. (2022). Phytopathology®
Names
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter solanacearum’ is an insect-transmitted bacterium associated with several plant diseases. In the Mediterranean basin, ‘Ca. L. solanacearum’ haplotype D is vectored by Bactericera trigonica and can severely infect carrot plants leading to abnormal growth phenotypes and significant yield losses. Insecticide applications are insufficient to suppress disease spread and damage, and additional means for disease control are needed. In the current study we evaluated the resistance of 97 carrot accessions to the bacterial pathogen ‘Ca. Liberibacter solanacearum’ and its associated symptoms. Accessions (Western and Asian types) were first screened in two commercial carrot fields. We found that Western type accessions were less prone to develop disease symptoms in both fields and were less frequently visited by the insect vector in one field. Overall, 22 Asian and 5 Western accessions with significantly lower disease incidence compared with the commercial cultivar were found. These accessions were then inoculated with ‘Ca. L. solanacearum’ under controlled conditions and were assessed for disease incidence, insect oviposition and bacterial relative titer. Five accessions (3 Asian and 2 Western) had significantly lower disease incidence compared with the reference cultivar. Interestingly, disease incidence was not necessarily in line with insect oviposition or in planta bacterial titer, which may indicate that other, perhaps physiological, differences among the accessions may govern the susceptibility of plants to the disease. The resistant accessions found in this study could be used in future resistance breeding programs and to better understand the underlying mechanisms of resistance to ‘Ca. L. solanacearum’.

Strain Tracking of ‘<i>Candidatus</i> Liberibacter asiaticus’, the Citrus Greening Pathogen, by High-Resolution Microbiome Analysis of Asian Citrus Psyllids

Citation
Higgins et al. (2022). Phytopathology® 112 (11)
Names
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
The Asian citrus psyllid, Diaphorina citri, is an invasive insect and a vector of ‘ Candidatus Liberibacter asiaticus’ ( CLas), a bacterium whose growth in Citrus species results in huanglongbing (HLB), also known as citrus greening disease. Methods to enrich and sequence CLas from D. citri often rely on biased genome amplification and nevertheless contain significant quantities of host DNA. To overcome these hurdles, we developed a simple pretreatment DNase and filtration (PDF) protocol to remove host DNA and directly sequence CLas and the complete, primarily uncultivable microbiome from D. citri adults. The PDF protocol yielded CLas abundances upward of 60% and facilitated direct measurement of CLas and endosymbiont replication rates in psyllids. The PDF protocol confirmed our lab strains derived from a progenitor Florida CLas strain and accumulated 156 genetic variants, underscoring the utility of this method for bacterial strain tracking. CLas genetic polymorphisms arising in lab-reared psyllid populations included prophage-encoding regions with key functions in CLas pathogenesis, putative antibiotic resistance loci, and a single secreted effector. These variants suggest that laboratory propagation of CLas could result in different phenotypic trajectories among laboratories and could confound CLas physiology or therapeutic design and evaluation if these differences remain undocumented. Finally, we obtained genetic signatures affiliated with Citrus nuclear and organellar genomes, entomopathogenic fungal mitochondria, and commensal bacteria from laboratory-reared and field-collected D. citri adults. Hence, the PDF protocol can directly inform agricultural management strategies related to bacterial strain tracking, insect microbiome surveillance, and antibiotic resistance screening.

Titer and Distribution of ‘<i>Candidatus</i> Phytoplasma pruni’ in <i>Prunus avium</i>

Citation
Wright et al. (2022). Phytopathology® 112 (7)
Names
Ca. Phytoplasma pruni
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Phytoplasma pruni’ infection in cherries causes small, misshapen fruit with poor color and taste, rendering the fruit unmarketable. However, this is a disease with a long development cycle and a scattered, nonuniform symptom distribution in the early stages. To better understand the biology as well as the relationship between pathogen titer and disease expression, we carried out seasonal, spatial, and temporal examinations of ‘Ca. P. pruni’ titer and distribution in infected orchard-grown trees. Sequential sampling of heavily infected trees revealed marked seasonal patterns, with differential accumulation in woody stem and leaf tissues and, most notably, within fruit in the early stages of development from bloom to pit hardening. Furthermore, mapping phytoplasma distribution and titer in trees at different stages of infection indicated that infection proceeds through a series of stages. Initially, infection spreads basipetally and accumulates in the roots before populating aerial parts of the trees from the trunk upward, with infection of specific tissues and limbs followed by an increasing phytoplasma titer. Finally, we observed a correlation between phytoplasma titer and symptom severity, with severe symptom onset associated with three to four orders of magnitude more phytoplasma than mild symptoms. Cumulatively, these data aid in accurate sampling and management decision-making and furthers our understanding of disease development.

Prevalent Transmission of ‘Candidatus Liberibacter asiaticus’ over ‘Ca. Liberibacter americanus’ in a Long-Term Controlled Environment

Citation
Gasparoto et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter asiaticus Ca. Liberibacter americanus
Subjects
Agronomy and Crop Science Plant Science
Abstract
In Brazil, citrus huanglongbing (HLB) is associated with ‘Candidatus Liberibacter americanus’ (CLam) and ‘Ca. Liberibacter asiaticus’ (CLas). However, there are few studies about HLB epidemiology when both Liberibacter spp. and its insect vector, the Asian citrus psyllid (ACP, Diaphorina citri), are present. The objective of this work was to compare the transmission of HLB by ACP when both CLam and CLas are present as primary inoculum. Two experiments were performed under screenhouse conditions from April 2008 to January 2012 (experiment 1) and from February 2011 to December 2015 (experiment 2). The experiments were carried out with sweet orange plants infected with CLam or CLas as inoculum source surrounded by sweet orange healthy plants. One hundred Liberibacter-free adult psyllids were monthly confined to the source of inoculum plants for 7 days with subsequent free movement inside the screenhouse. Fortnightly, nymphs and adults of psyllids were monitored. Psyllid and leaf samples were collected periodically for Liberibacter detection by PCR or quantitative PCR. CLas was detected more frequently than CLam in both psyllid and leaf samples. No mixed infections were detected in the psyllids. A clear prevalence of CLas over CLam was observed in both experiments. The final HLB incidences were 16.7 and 14.5% of Liberibacter-positive test plants, and CLas was detected in 92.3 and 93.1% of these infected plants. Mixed infection was observed only in 3.8% of infected test plants in experiment 1. These results endorse the shift in the prevalence of CLam to CLas observed in citrus orchards of São Paulo, Brazil.

Effect of Plant Age, Temperature, and Vector Load on ‘Candidatus Liberibacter solanacearum’ in Planta Titer and Shoot Proliferation Symptoms in Carrot

Citation
Keshet-Sitton et al. (2022). Phytopathology® 112 (1)
Names
Ca. Phytoplasma “Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
A decade ago, shoot proliferation symptoms (i.e., witches’ broom) in carrots were believed to be the cause of ‘Candidatus Phytoplasma’ and Spiroplasma infection, yet in recent years this association appeared to have weakened, and a closer association was found with the yet-unculturable, psyllid-transmitted Gram-negative bacterium ‘Candidatus Liberibacter solanacearum’. In Israel, carrots are grown throughout the year, yet shoot proliferation symptoms tend to appear only in mature plants and mostly in late spring to early summer. We hypothesized that factors such as plant age, temperature, and vector load, which vary during the year, have a critical effect on symptom development and examined these factors under controlled conditions. Here we show that young carrot seedlings are as prone as older plants to develop shoot proliferation symptoms after ‘Ca. L. solanacearum’ inoculation. Surprisingly, we found that the local ‘Ca. L. solanacearum’ haplotype was extremely sensitive to constant temperature of 30°C, which led to a significant reduction in bacterial growth and symptom development compared with 18°C, which was very conducive to symptom development. We have also found that inoculations with 10 or 20 psyllids per plant results in faster symptom development compared with inoculations with two psyllids per plant; however, the difference between vector loads in disease progress rate was not significant. These data provide important insights to the effects of plant age, growth temperature, and vector load on ‘Ca. L. solanacearum’ and its associated symptoms and further strengthen the notion that ‘Ca. L. solanacearum’ is the main responsible agent for carrot witches’ broom in Israel. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Identification of a Chromosomal Deletion Mutation and the Dynamics of Two Major Populations of ‘<i>Candidatus</i> Liberibacter asiaticus’ in Its Hosts

Citation
Armstrong et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter asiaticus’ (Las) is the prominent species of Liberibacter associated with huanglongbing, a devastating disease of citrus worldwide. In this study, we report the identification of an ∼8.3-kb DNA region of the Las genome containing eight putative open reading frames flanked by two inverted repeats, which was not present in the Las str. psy62 genome. Comparisons with other genome sequences established this region as a unique genetic element associated with genome plasticity/instability. Primers specific for both the presence (Las wild type) and absence (Las mutant) of this region were designed to study the population dynamics and host adaptation of the two strains. Las populations with and/or without the wild-type strain were detected and differentiated in &gt;2,300 samples that included psyllids, periwinkle, and several species of citrus. In psyllids, although a mixed population of the wild type and mutant was observed in most samples (88%), the wild-type Las was detected alone at a rate of 11%. In contrast, none of the infected citrus plants were positive for the wild type alone, which harbored either the mutant strain alone (8%) or a mixed population of the mutant and wild type (92%). Furthermore, the dynamics of these two major Las populations varied with different citrus hosts, whereas an in-depth study on grapefruit that did not rapidly succumb to disease revealed that the population of mutant alone increased with time, indicating that the absence of this genetic element is associated with the fitness of Las in planta under the selection pressure of its host.

Detection and Identification of a ‘<i>Candidatus</i> Liberibacter solanacearum’ Species from Ash Tree Infesting Psyllids

Citation
Wamonje et al. (2022). Phytopathology® 112 (1)
Names
Liberibacter “Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter’ species are associated with severe, economically important diseases. Nearly all known species are putatively insect transmitted, specifically by psyllids. Detection of ‘Ca. Liberibacter’ in plants is complicated by their uneven distribution in host plants and largely fastidius nature. The death of black (Fraxinus nigra) and mancana (Fraxinus mandshurica) ash trees in Saskatchewan, Canada has been associated with infestation by the cottony ash psyllid (Psyllopsis discrepans). A combination of conventional PCR amplification and Sanger sequencing of the 16S recombinant DNA was used to detect and identify ‘Ca. Liberibacter’ in psyllids collected from ash trees in Saskatchewan. BLAST analysis of two 16S sequences that were 1,058 and 1,085 bp long (NTHA 5, GenBank accession number MK942379 and NTHA 6, GenBank accession number MK937570, respectively) revealed they were 99 to 100% similar to a ‘Ca. Liberibacter solanacearum’ sequence (GenBank accession number KX197200) isolated from the Nearctic psyllid (Bactericera maculipennis) of U.S. provenance. Sequencing the psyllid genes CO1 and Cyt-b confirmed that the psyllids from which the bacterial DNA was isolated were P. discrepans, based on comparisons with sequences in GenBank and BOLD and a reference sample from the United Kingdom. These results provide the first evidence that ‘Ca. Liberibacter solanacearum’ species are associated with psyllids collected from ash trees and specifically P. discrepans. The recent episodes of dieback of ash in Saskatchewan associated with psyllid feeding are consistent with disease symptoms caused by ‘Ca. Liberibacter’ pathogens, and this possibility warrants further study.

Generous Hosts: ‘Candidatus Liberibacter asiaticus’ Growth in Madagascar Periwinkle (Catharanthus roseus) Highlights Its Nutritional Needs

Citation
Killiny (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter asiaticus’, the putative causal agent of citrus greening, is not available in pure culture yet. In addition to trees of citrus and citrus relatives, ‘Ca. L. asiaticus’ can grow in Madagascar periwinkle (Catharanthus roseus). Using gas chromatography-mass spectrometry, we compared the phloem sap composition in sweet orange ‘Valencia’ (Citrus sinensis) and periwinkle plants after the infection with ‘Ca. L. asiaticus’. Interestingly, in contrast to our previous studies of total leaf metabolites, we found that, compared with uninfected phloem sap, the organic acids implicated in the tricarboxylic acid cycle (TCA) cycle including citrate, isocitrate, succinate, fumarate, and malate were reduced significantly in the infected phloem saps of both species. As a result of the reduction of organic acids content, the pH of infected phloem saps was increased. We hypothesize that the bacterial growth induces the mitochondrial TCA cycle in parenchyma cells to produce more of these compounds to be used as a bacterial carbon source. Once these compounds reach a low level in the phloem sap, the bacterium may send a signal, yet to be identified, to initiate a feedback loop to further induce the TCA cycle. Phloem blockage might be another reason behind the reduced translocation of TCA cycle intermediates within the phloem. The net result, localized availability of organic acids, likely benefits bacterial growth and may explain the unequal distribution of ‘Ca. L. asiaticus’ within infected trees. These findings may help in designing media for the pure culturing of ‘Ca. L. asiaticus’.

Growth of ‘Candidatus Liberibacter asiaticus’ in Commercial Grapefruit Juice-Based Media Formulations Reveals Common Cell Density-Dependent Transient Behaviors

Citation
Merfa e Silva et al. (2022). Phytopathology® 112 (1)
Names
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
The phloem-restricted, insect-transmitted bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) is associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. The inability to culture CLas impairs the understanding of its virulence mechanisms and the development of effective management strategies to control this incurable disease. Previously, our research group used commercial grapefruit juice (GJ) to prolong the viability of CLas in vitro. In the present study, GJ was amended with a wide range of compounds and incubated under different conditions to optimize CLas growth. Remarkably, results showed that CLas growth ratios were inversely proportional to the initial inoculum concentration. This correlation is probably regulated by a cell density-dependent mechanism, because diluting samples between subcultures allowed CLas to resume growth. Moreover, strategies to reduce the cell density of CLas, such as subculturing at short intervals and incubating samples under flow conditions, allowed this bacterium to multiply and reach maximum growth as early as 3 days after inoculation, although no sustained exponential growth was observed under any tested condition. Unfortunately, cultures were only transient, because CLas lost viability over time; nevertheless, we obtained populations of about 105 genome equivalents/ml repeatedly. Finally, we established an ex vivo system to grow CLas within periwinkle calli that could be used to propagate bacterial inoculum in the lab. In this study we determined the influence of a comprehensive set of conditions and compounds on CLas growth in culture. We hope our results will help guide future efforts toward the long-sought goal of culturing CLas axenically.