Citrus huanglongbing (HLB), caused by phloem-limited ‘Candidatus Liberibacter’ bacteria, is a destructive disease threatening the worldwide citrus industry. The mechanisms of pathogenesis are poorly understood and no efficient strategy is available to control HLB. Here, we used a comparative genomics screen to identify candidate microbe-associated molecular patterns (MAMPs) from ‘Ca. Liberibacter’ spp. We identified the core genome from multiple ‘Ca. Liberibacter’ pathogens, and searched for core genes with signatures of positive selection. We hypothesized that genes encoding putative MAMPs would evolve to reduce recognition by the plant immune system, while retaining their essential functions. To efficiently screen candidate MAMP peptides, we established a high-throughput microtiter plate-based screening assay, particularly for citrus, that measured reactive oxygen species (ROS) production, which is a common immune response in plants. We found that two peptides could elicit ROS production in Arabidopsis and Nicotiana benthamiana. One of these peptides elicited ROS production and defense gene expression in HLB-tolerant citrus genotypes, and induced MAMP-triggered immunity against the bacterial pathogen Pseudomonas syringae. Our findings identify MAMPs that boost immunity in citrus and could help prevent or reduce HLB infection.
Phytoplasmas are the causative agent of numerous diseases of plant species all over the world, including important food crops. The mode by which phytoplasmas multiply and behave in their host is poorly understood and often based on genomic data. We used yeast two-hybrid screening to find new protein–protein interactions between the causal agent of apple proliferation ‘Candidatus Phytoplasma mali’ and its host plant. Here, we report that the ‘Ca. P. mali’ strain PM19 genome encodes a protein PM19_00185 that interacts with at least six different ubiquitin-conjugating enzymes (UBC; E2) of Arabidopsis thaliana. An in vitro ubiquitination assay showed that PM19_00185 is enzymatically active as E3 ligase with A. thaliana E2 UBC09 and Malus domestica E2 UBC10. We show that a nonhost bacteria (Pseudomonas syringae pv. tabaci) can grow in transgenic A. thaliana plant lines expressing PM19_00185. A connection of phytoplasma effector proteins with the proteasome proteolytic pathway has been reported before. However, this is, to our knowledge, the first time that a phytoplasma effector protein with E3 ligase activity has been reported.
Citrus huanglongbing (HLB) is one of the most destructive diseases affecting citrus plants. ‘Candidatus Liberibacter asiaticus’, an uncultivated α-proteobacteria, is the most widely spread causal agent of HLB and is transmitted by the Asian citrus psyllid Diaphorina citri. ‘Ca. L. asiaticus’ attachment to the psyllid midgut is believed to be critical to further infect other organs, including the salivary gland. In this study, the type IVc tight adherence (Tad) pilus locus encoded by ‘Ca. L. asiaticus’ was characterized. The Tad loci are conserved among members of Rhizobiaceae, including ‘Ca. L. asiaticus’ and Agrobacterium spp. Ectopic expression of the ‘Ca. L. asiaticus’ cpaF gene, an ATPase essential for the biogenesis and secretion of the Tad pilus, restored the adherence phenotype in cpaF mutant of A. tumefaciens, indicating CpaF of ‘Ca. L. asiaticus’ was functional and critical for bacterial adherence mediated by Tad pilus. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that ‘Ca. L. asiaticus’ Tad pilus-encoding genes and ‘Ca. L. asiaticus’ pilin gene flp3 were upregulated in psyllids compared with in planta. A bacterial one-hybrid assay showed that ‘Ca. L. asiaticus’ VisN and VisR, members of the LuxR transcriptional factor family, were bound to the flp3 promoter. VisNR regulate flp3. Negative regulation of the flp3 promoter by both VisN and VisR was demonstrated using a shuttle strategy, with analysis of the phenotypes and immunoblotting together with quantification of the expression of the flp3 promoter fused to the β-galactosidase reporter gene. Comparative expression analysis confirmed that ‘Ca. L. asiaticus’ visNR was less expressed in the psyllid than in the plant host. Further, motility and biofilm phenotypes of the visNR mutant of A. tumefaciens were fully complemented by expressing ‘Ca. L. asiaticus’ visNR together. The physical interaction between VisN and VisR was confirmed by pull-down and stability assays. The interaction of the flp3 promoter with VisR was verified by electrophoretic mobility shift assay. Taken together, the results revealed the contribution of the Tad pilus apparatus in the colonization of the insect vector by ‘Ca. L. asiaticus’ and shed light on the involvement of VisNR in regulation of the Tad locus.
Huanglongbing (HLB), a destructive citrus disease, is associated with ‘Candidatus Liberibacter asiaticus’, which is transmitted by the Asian citrus psyllid Diaphorina citri. Both ‘Ca. L. asiaticus’ and its vector manipulate the host metabolism for their benefit, to meet their nutritional needs and neutralize the host defense responses. We used a targeted gas chromatography-mass spectrometry–based method to explore the connection between the tricarboxylic acid (TCA) cycle, γ-aminobutyric acid (GABA) shunt, and polyamines (PAs) pathways in citrus. ‘Ca. L. asiaticus’ and D. citri accelerated the conversion of α-ketoglutarate to glutamate, then to GABA, causing an accumulation of GABA in the cytosol. In silico analysis showed that the citrus genome possesses a putative GABA permease that connects the GABA shunt with the TCA cycle and supports the accumulation of succinate, fumarate, and citrate. Additionally, the PAs biosynthetic pathway might be connected directly to the TCA cycle, through the production of fumarate, or indirectly, via enhancement of GABA shunt. Taken together, we suggest that GABA shunt and PAs pathways are alternative pathways that contribute to the flux toward succinate rather than an intact TCA cycle in citrus. Both ‘Ca. L. asiaticus’ and its vector enhance these pathways. This study provides more insights into citrus responses to the HLB pathosystem and could be a further step toward clues for understanding the nutritional needs of ‘Ca. L. asiaticus’, which could help in culturing ‘Ca. L. asiaticus’.
The oxidative (H2O2) burst is a seminal feature of the basal plant defense response to attempted pathogen invasions. In ‘Candidatus Liberibacter asiaticus’ UF506, expression of the SC2 prophage-encoded secreted peroxidase (F489_gp15) increases bacterial fitness and delays symptom progression in citrus. Two chromosomal 1-Cys peroxiredoxin genes, CLIBASIA_RS00940 (Lasprx5) and CLIBASIA_RS00445 (Lasbcp), are conserved among all sequenced ‘Ca. L. asiaticus’ strains, including those lacking prophages. Both LasBCP and LasdPrx5 have only a single conserved peroxidatic Cys (CP/SH) and lack the resolving Cys (CR/SH). Lasprx5 appeared to be a housekeeping gene with similar moderate transcript abundance in both ‘Ca. L. asiaticus’–infected psyllids and citrus. By contrast, Lasbcp was expressed only in planta, similar to the expression of the SC2 peroxidase. Since ‘Ca. L. asiaticus’ is uncultured, Lasbcp and Lasprx5 were functionally validated in a cultured surrogate species, Liberibacter crescens, and both genes significantly increased oxidative stress tolerance and cell viability in culture. LasBCP was nonclassically secreted and, in L. crescens, conferred 214-fold more resistance to tert-butyl hydroperoxide (tBOOH) than wild type. Transient overexpression of Lasbcp in tobacco suppressed H2O2-mediated transcriptional activation of RbohB, the key gatekeeper of the systemic plant defense signaling cascade. Lasbcp expression did not interfere with the perception of ‘Ca. L. asiaticus’ flagellin (flg22Las) but interrupted the downstream activation of RbohB and stereotypical deposition of callose in tobacco. Critically, LasBCP also protected against tBOOH-induced peroxidative degradation of lipid membranes in planta, preventing subsequent accumulation of antimicrobial oxylipins that can also trigger the localized hypersensitive cell death response.
The 22–amino acid (flg22) pathogen-associated molecular pattern from the flagellin of Xanthomonas citri subsp. citri has been shown to induce defense responses correlated with citrus canker resistance. Here, flg22 of ‘Candidatus Liberibacter asiaticus’, the putative causal agent of Huanglongbing (HLB), elicited differential defense responses that were weaker than those from Xcc-flg22, between those of the HLB-tolerant mandarin cultivar Sun Chu Sha and susceptible grapefruit cultivar Duncan. Transcriptomics was used to compare the effect of CLas-flg22 and Xcc-flg22 between the citrus genotypes and identified 86 genes induced only by CLas-flg22 in the tolerant mandarin. Expression of 16 selected genes was validated, by reverse transcription-quantitative polymerase chain reaction, and was evaluated in citrus during ‘Ca. L. asiaticus’ infection. Differential expression of a number of genes occurred between tolerant and susceptible citrus infected with ‘Ca. L. asiaticus’, suggesting their involvement in HLB tolerance. In addition, several genes were similarly regulated by CLas-flg22 and ‘Ca. L. asiaticus’ treatments, while others were oppositely regulated in the tolerant mandarin, suggesting similarity and interplay between CLas-flg22 and ‘Ca. L. asiaticus’–triggered defenses. Genes identified are valuable in furthering the study of HLB tolerance mechanisms and, potentially, for screening for HLB-tolerant citrus using CLas-flg22 as a pathogen proxy.