Abstract
Objective
‘Candidatus Liberibacter asiaticus’ (CLas) is associated with the devastating citrus ‘greening’ disease. All attempts to achieve axenic growth and complete Koch’s postulates with CLas have failed to date, at best yielding complex cocultures with very low CLas titers detectable only by PCR. Reductive genome evolution has rendered all pathogenic ‘Ca. Liberibacter’ spp. deficient in multiple key biosynthetic, metabolic and structural pathways that are highly unlikely to be rescued in vitro by media supplementation alone. By contrast, Liberibacter crescens (Lcr) is axenically cultured and its genome is both syntenic and highly similar to CLas. Our objective is to achieve replicative axenic growth of CLas via addition of missing culturability-related Lcr genes.
Results
Bioinformatic analyses identified 405 unique ORFs in Lcr but missing (or truncated) in all 24 sequenced CLas strains. Site-directed mutagenesis confirmed and extended published EZ-Tn5 mutagenesis data, allowing elimination of 310 of these 405 genes as nonessential, leaving 95 experimentally validated Lcr genes as essential for CLas growth in axenic culture. Experimental conditions for conjugation of large GFP-expressing plasmids from Escherichia coli to Lcr were successfully established for the first time, providing a practical method for transfer of large groups of ‘essential’ Lcr genes to CLas.
Abstract
Objectives
In order to characterize a river-associated, enriched microbiome capable of degrading an anthraquinone dye from the oil blue family, as well as assessing its functional potential, we performed a taxa-specific metagenomic deconvolution analysis based on contact probability maps at the chromosomal level. This study will allow associating the genomic content of “Candidatus Afipia apatlaquensis” strain IBT-C3 with its phenotypic potential in the context of bioremediation of textile dyes. We anticipate that this resource will be very useful in comparative genomic clinical studies, contributing to understanding the genomic basis of Afipia pathogenicity.
Data description
Here, we report the first draft genome sequence of “Candidatus Afipia apatlaquensis” sp. nov., strain IBT-C3, obtained by deconvolution of a textile-dye degrader microbiome in Mexico. The genome composite was deconvoluted using a Hi-C proximity ligation method. Whole-genome-based comparisons and phylogenomics reconstruction indicate that strain IBT-C3 represents a new species of the genus Afipia. The assembly completeness was 92.5% with 5,604,749 bp in length and 60.72% G+C content. The genome complement of IBT-C3 suggests a functional potential for decolorization of textile dyes, contrasting with previous reports of Afipia genus focused on its pathogenic potential.