Abstract
Background
‘Candidatus Phytoplasma ulmi’ is the agent associated with elm yellows and has been categorised in the European Union as a quarantine pathogen. For central and northern European countries, information on the occurrence and distribution of the pathogen and its impact on elms is scarce, so a survey of native elm trees has been conducted in Germany.
Results
About 6500 samples from Ulmus minor, Ulmus laevis and Ulmus glabra, were collected nationwide. Phytoplasma detection was performed by applying a universal 16Sr DNA-based quantitative PCR (qPCR) assay and a novel ‘Ca. P. ulmi’ specific qPCR assay targeting the 16S–23S spacer region. Both assays revealed that 28% of the samples were infected by ‘Ca. P. ulmi’, but infection rates of the elm species and regional incidences differed. The phytoplasma presence in the trees was not correlated to disease-specific symptoms. The survey identified a regional disparity of infection which was high in east, south and central Germany, whereas only a few infected sites were found in the western and northern parts of the country. Monitoring the seasonal titre of ‘Ca. P. ulmi’ in an infected tree by qPCR revealed a high colonisation in all parts of the tree throughout the year.
Conclusions
‘Ca. P. ulmi’ is widely present in elms in Germany. The rare occurrence of symptoms indicates either a high degree of tolerance in elm populations or a low virulence of pathogen strains enabling high infection rates in a long-living host.
After publication of our article [1] it came to our notice that the source of the sequence for the control plasmid, pNeo (Materials and methods: Controls) was incorrectly stated as AB094461. The correct accession number is AB074461. The authors apologize for any confusion this may have caused.
Abstract
Background
Huanglongbing (HLB) is a worldwide devastating disease of citrus. There are no effective control measures for this newly emerging but century-old disease. Previously, we reported a combination of Penicillin G and Streptomycin was effective in eliminating or suppressing the associated bacterium, ‘Candidatus Liberibacter asiaticus’ (Las).
Results
Here we report the bacterial composition and community structure in HLB-affected citrus plants during a growing season and while being treated with antibiotic combinations PS (Penicillin G and Streptomycin) and KO (Kasugamycin and Oxytetracycline) using the Phylochip™ G3 array. Both antibiotic treatments resulted in significantly lower Las bacterial titers (Pr<0.05) and hybridization scores. Of the 50,000+ available operational taxonomic units (OTUs) on PhyloChip™ G3, 7,028 known OTUs were present in citrus leaf midribs. These OTUs were from 58 phyla, of which five contained 100 or more OTUs, Proteobacteria (44.1%), Firmicutes (23.5%), Actinobacteria (12.4%), Bacteroidetes (6.6%) and Cyanobacteria (3.2%). In the antibiotic treated samples, the number of OTUs decreased to a total of 5,599. The over-all bacterial diversity decreased with the antibiotic treatments, as did the abundance of 11 OTUs within Proteobacteria, Firmicutes, Bacteroidetes and Planctomycetes. Within the Proteobacteria, ten OTUs representing the class
γ
-proteobacteria increased in abundance after four months of treatment, when the Las bacterium was at its lowest level in the HLB-affected citrus field plants.
Conclusions
Our data revealed that Proteobacteria was constantly the dominant bacterial phylum recovered from citrus leaf midribs, with the α-proteobacterial and the γ-proteobacterial classes vying for prevalence. In addition, the level of bacterial diversity found in the leaf midribs of field citrus was greater than previously described. Bacterial cells in close proximity may be able to modify their microenvironment, making the composition of the microbial community an important factor in the ability of Las to cause HLB progression. A low Las level was seen as an annual fluctuation, part of the bacterial population dynamics, and as a response to the antibiotic treatments.
Abstract
Background
Huanglongbing (HLB) is one of the most destructive citrus diseases in the world. The disease is associated with the presence of a fastidious, phloem-limited α- proteobacterium, 'Candidatus Liberibacter asiaticus', 'Ca. Liberibacter africanus' or 'Ca. Liberibacter americanus'. HLB-associated Liberibacters have spread to North America and South America in recent years. While the causal agents of HLB have been putatively identified, information regarding the worldwide population structure and epidemiological relationships for 'Ca. L. asiaticus' is limited. The availability of the 'Ca. L. asiaticus' genome sequence has facilitated development of molecular markers from this bacterium. The objectives of this study were to develop microsatellite markers and conduct genetic analyses of 'Ca. L. asiaticus' from a worldwide collection. Two hundred eighty seven isolates from USA (Florida), Brazil, China, India, Cambodia, Vietnam, Taiwan, Thailand, and Japan were analyzed.
Results
A panel of seven polymorphic microsatellite markers was developed for 'Ca. L. asiaticus'. Microsatellite analyses across the samples showed that the genetic diversity of 'Ca. L. asiaticus' is higher in Asia than Americas. UPGMA and STRUCTURE analyses identified three major genetic groups worldwide. Isolates from India were genetically distinct. East-southeast Asian and Brazilian isolates were generally included in the same group; a few members of this group were found in Florida, but the majority of the isolates from Florida were clustered separately. eBURST analysis predicted three founder haplotypes, which may have given rise to three groups worldwide.
Conclusions
Our results identified three major genetic groups of 'Ca. L. asiaticus' worldwide. Isolates from Brazil showed similar genetic makeup with east-southeast Asian dominant group, suggesting the possibility of a common origin. However, most of the isolates recovered from Florida were clustered in a separate group. While the sources of the dominant 'Ca. L. asiaticus' in Florida were not clearly understood, the less-pervasive groups may have been introduced directly from Asia or via Brazil. Notably, the recent outbreak of HLB in Florida probably occurred through multiple introductions. Microsatellite markers developed in this study provide adequate discriminatory power for the identification and differentiation of closely-related isolates, as well as for genetic studies of 'Ca. L. asiaticus'.
Abstract
Background
Huanglongbing (HLB) is a highly destructive disease of citrus production worldwide. 'Candidatus Liberibacter asiaticus', an unculturable alpha proteobacterium, is a putative pathogen of HLB. Information about the biology and strain diversity of 'Ca. L. asiaticus' is currently limited, inhibiting the scope of HLB research and control.
Results
A genomic region (CLIBASIA_05640 to CLIBASIA_05650) of 'Ca. L. asiaticus' showing hyper-sequence variation or locus mosaicism was identified and investigated using 262 bacterial strains (188 from China and 74 from Florida). Based on the characteristic electrophoretic profiles of PCR amplicons generated by a specific primer set, eight electrophoretic types (E-types) were identified, six E-types (A, B, C, D, E, and F) in China and four E-types (A, C, G, and H) in Florida. The 'Ca. L. asiaticus' strains from China consisted predominately of E-type A (71.3%) and E-type B (19.7%). In contrast, the 'Ca. L. asiaticus' strains from Florida was predominated by E-type G (82.4%). Diversity of 'Ca. L. asiaticus' in China was also evidenced. Strains from the high altitude Yunnan Province consisted of five E-types with E-type B being the majority (62.8%), whereas strains from the low altitude coastal Guangdong Province consisted of only two E-types with E-type A as the majority (97.0%). Sequence analyses revealed that variation of DNA amplicons was due to insertion/deletion events at CLIBASIA_05650 and the downstream intergenic region.
Conclusions
This study demonstrated the genomic mosaicism of 'Ca. L. asiaticus' resulted from active DNA insertion/deletion activities. Analyses of strain variation depicted the significant inter- and intra-continent diversity of 'Ca. L. asiaticus'.