Publications
3534

Sort by date names
Browse by authors subjects journals

Recovery Plan for X-Disease in Stone Fruit Caused by ‘Candidatus Phytoplasma pruni’

Citation
Harper et al. (2023). Plant Health Progress
Names
Ca. Phytoplasma pruni
Abstract
Stone fruits are a multibillion-dollar industry for the United States and Canada, one that has repeatedly suffered significant economic losses due to outbreaks of the X-disease phytoplasma (‘ Candidatus Phytoplasma pruni’) over the last century. Orchards and entire production areas have been abandoned, with corresponding losses to growers, fruit packers, and consumers. The most recent outbreak, in the U.S. Pacific Northwest, resulted in an estimated $65 million (USD) loss in revenue between 201

Endophyte mediated restoration of citrus microbiome and modulation of host defense genes against Candidatus Liberibacter asiaticus

Citation
Li et al. (2023).
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Background Phloem limited non-culturable bacteria Candidatus Liberibacter asiaticus (CLas) affects the worldwide citrus production through causing citrus Huanglongbing (HLB). Despite the efficient colonization of citrus endophyte in the phloem as same niche as CLas pathogen, citrus microbiome manipulation and recruitment as well as citrus defense mechanisms in the presence of indigenous citrus endophyte against this pathogen are still unknown.Results Endophyte-mediated microbiom

Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”

Citation
Lehtovirta-Morley et al. (2016). Applied and Environmental Microbiology 82 (9)
Names
Ca. Nitrosotalea devanaterra
Abstract
ABSTRACT Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammon