Publications
3485

Sort by date names
Browse by authors subjects journals

Zebra Chip Disease and Potato Biochemistry: Tuber Physiological Changes in Response to ‘Candidatus Liberibacter solanacearum’ Infection Over Time

Citation
Rashed et al. (2013). Phytopathology® 103 (5)
Names
“Liberibacter solanacearum”
Abstract
Zebra chip disease, putatively caused by the bacterium ‘Candidatus Liberibacter solanacearum’, is of increasing concern to potato production in Mexico, the United States, and New Zealand. However, little is known about the etiology of this disease and changes that occur within host tubers that result in its symptoms. Previous studies found that increased levels of phenolics, amino acids, defense proteins, and carbohydrates in ‘Ca. L. solanacearum’-infected tubers are associated with symptoms of

Mobile Elements in a Single-Filament Orange Guaymas Basin Beggiatoa (“Candidatus Maribeggiatoa”) sp. Draft Genome: Evidence for Genetic Exchange with Cyanobacteria

Citation
MacGregor et al. (2013). Applied and Environmental Microbiology 79 (13)
Names
Ca. Maribeggiatoa
Abstract
ABSTRACTThe draft genome sequence of a single orangeBeggiatoa(“CandidatusMaribeggiatoa”) filament collected from a microbial mat at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) shows evidence of extensive genetic exchange with cyanobacteria, in particular for sensory and signal transduction genes. A putative homing endonuclease gene and group I intron within the 23S rRNA gene; several group II catalytic introns; GyrB and DnaE inteins, also encoding homing endonucleases; mult

Co-infection with Anaplasma platys, Bartonella henselae and Candidatus Mycoplasma haematoparvum in a veterinarian

Citation
Maggi et al. (2013). Parasites & Vectors 6 (1)
Names
Ca. Mycoplasma haematoparvum
Abstract
Abstract Background During a two year period, a 27-year-old female veterinarian experienced migraine headaches, seizures, including status epilepticus, and other neurological and neurocognitive abnormalities. Prior to and during her illness, she had been actively involved in hospital-based work treating domestic animals, primarily cats and dogs, in Grenada and Ireland and anatomical research requiring the dissection of wild animals (including lions, giraffe, ra

CandidatusLiberibacter americanus induces significant reprogramming of the transcriptome of the susceptible citrus genotype

Citation
Mafra et al. (2013). BMC Genomics 14 (1)
Names
Ca. Liberibacter americanus
Abstract
Abstract Background Citrus huanglongbing (HLB) disease is caused by endogenous, phloem-restricted, Gram negative, uncultured bacteria named Candidatus Liberibacter africanus (CaLaf), Ca. L. asiaticus (CaLas), and Ca. L. americanus (CaLam), depending on the continent where the bacteria were first detected. The Asian citrus psyllid vector, Diaphorina citri, transmits CaLas and CaLam and both Liberibacter species are present in Brazil. Several studies of the trans

Physiological Characterization of an Anaerobic Ammonium-Oxidizing Bacterium Belonging to the “Candidatus Scalindua” Group

Citation
Awata et al. (2013). Applied and Environmental Microbiology 79 (13)
Names
Ca. Scalindua
Abstract
ABSTRACTThe phylogenetic affiliation and physiological characteristics (e.g.,Ksand maximum specific growth rate [μmax]) of an anaerobic ammonium oxidation (anammox) bacterium, “CandidatusScalindua sp.,” enriched from the marine sediment of Hiroshima Bay, Japan, were investigated. “CandidatusScalindua sp.” exhibits higher affinity for nitrite and a lower growth rate and yield than the known anammox species.

The effect of ‘Candidatus Liberibacter asiaticus’ infection on the proteomic profiles and nutritional status of pre-symptomatic and symptomatic grapefruit (Citrus paradisi) plants

Citation
Nwugo et al. (2013). BMC Plant Biology 13 (1)
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Background Huanglongbing (HLB) is a highly destructive citrus disease which threatens citrus production worldwide and ‘Candidatus Liberibacter asiaticus’ (Las), a non-culturable phloem-limited bacterium, is an associated causal agent of the disease. To better understand the physiological and molecular processes involved in host responses to Las, 2-DE and mass spectrometry analyses, as well as ICP spectroscopy analysis were employed to elucidate the glo

Cell Adhesion, Multicellular Morphology, and Magnetosome Distribution in the Multicellular Magnetotactic Prokaryote Candidatus Magnetoglobus multicellularis

Citation
Abreu et al. (2013). Microscopy and Microanalysis 19 (3)
Names
Ca. Magnetoglobus multicellularis
Abstract
AbstractCandidatus Magnetoglobus multicellularis is an uncultured magnetotactic multicellular prokaryote composed of 17-40 Gram-negative cells that are capable of synthesizing organelles known as magnetosomes. The magnetosomes of Ca. M. multicellularis are composed of greigite and are organized in chains that are responsible for the microorganism's orientation along magnetic field lines. The characteristics of the microorganism, including its multicellular life cycle, magnetic field orientation,